Operating Systems 351

Page
frame

.
Page =

Page P3 frame Mod? P3.page 1 |11
0 'ﬁ » 1D | N :
1 »{ 11 [N :
o T » 3A | N :

3] P * * P3, page 0 [1D
4 »3B[N -
5 P * * .

6 ~—» 29 | N P3, page 6 |29
7 » 9|y '
8 $ 4C | Y :
o | > ** :
Al | — :

S— P3, page 2 |3A

Virtual Page map

memory table P3, page 4 |3B
L/ :
.
Backing store E
L]

P3, page 8 |4C

Real memory

Figure 6.19 Virtual-to-real mapping using a page map table.

time. For example, it is clearly advantageous to allow other programs to use the
CPU while paging 1/0 is being performed. The management of this multipro-
gramming requires that the interrupt system be available. Therefore, the page
fault interrupt handler first determines what actions need to be performed and
saves the status information from the interrupted process. The interrupt han-
dler than enables the interrupt system during the remainder of the processing.
More specifically, the interrupt handler selects a page frame to receive the
required page and marks this frame as committed so that it will not be selected
again because of a subsequent page fault. If a page is to be removed, the PMT for
the process that owns that page is updated to reflect its removal. This prevents
that process from attempting to reference the page while it is being removed. The
interrupt handler saves the status information from the program-interrupt work
area, placing it in some location associated with the process so that this

352 System Software

procedure DAT {implemented in hardware}

decompose virtual address into (page number, offset)
find entry in PMT for this page
if the page is currently in memory then
begin
combine (page frame address, offset) to form real address
if this is a “store” instruction then
mark PMT entry to indicate page modified
end {if page is in memory}
else

generate page fault interrupt

(a)

procedure PAGEFAULT {implementéd as part of the operating system}

save process status from interrupt work area
mark process as Blocked
if there is an empty page frame then
begin
select an empty page frame
mark the selected page frame table entry as committed
enable all interrupts using LPS
end {if empty page frame}
else
begin
select page to be removed
mark the selected page frame table entry as committed
update PMT to reflect the removal of the page
enable all interrupts using LPS
if the selected page has been modified then
begin
issue I/0 request to rewrite page to backing store
wait for completion of the write operation
end {if modified}
end {if no empty page frame} ;
issue I/0 request to read page into the selected page frame |
wait for completion of the read operation ;
update PMT and page frame table - i
mark process as Ready
restore status of user process that caused the page fault

i

(b) ;

Figure 6.20 Algorithms for dynamic address translation and page fault
interrupt processing.

Operating Systems

information will not be destroyed by a subsequent program interrupt. Then the
interrupt handler turns on the interrupt system by loading a status word that is
the same as the current SW, except that all MASK bits are set to 1. The remainder
of the interrupt-processing routine functions in much the same way as a user
process: it makes SVC requests to initiate 1/0 operations and to wait for the
results. After the completion of the paging operation, the interrupt handler uses
the saved status information to return control to the instruction that caused the
page fault. The dynamic address translation for this instruction will then be
repeated.

The algorithm description in Fig. 6.20(b) leaves several important ques-
tions unanswered. The most obvious of these is which page to select for
removal. Some systems keep records of when each page in memory was last
referenced and replace the page that has been unused for the longest time.
This is called the least recently used (LRU) method. Since the overhead for this
kind of record keeping can be high, simpler approximations to LRU are often
used. Other systems attempt to determine-the set of pages that are frequently
used by the process in question (the so-called working set of the process). These
systems attempt to replace pages in such a way that each process always has
its working set in memory. Discussions and evaluations of various page
replacement strategies can be found in Tanenbaum (1992) and Deitel (1990).

Another unanswered question concerns the implementation of the page
tables themselves. One possible solution is to implement these tables as arrays
in central memory. A register is set by the operating system to point to the
beginning of the PMT for the currently executing process. This method can be
very inefficient because it requires an extra memory access for each address
translation. Some systems, however, use such a technique in combination with
a high-speed buffer to improve average access time. Another possibility is to
implement the page map tables in a special high-speed associative memory.
This is very efficient, but may be too expensive for systems with large real
memories. Further discussions of these and other PMT implementation tech-
niques can be found in Tanenbaum (1992).

Demand-paging systems avoid most of the wasted memory due to frag-
mentation that is often associated with partitioning schemes. They also save
memory in other ways. For example, parts of a program that are not used dur-
ing a particular execution need not be loaded. However, demand-paging sys-
tems are vulnerable to other serious problems. For example, suppose that
referéncing a word in central memory requires 1 psec, and that fetching a page
from the backing store requires an average of 10 msec (10,000 psec). Suppose
also that on the average, considering all jobs in the system, only 1 out of
100 virtual memory references causes a page fault. Even with this apparently
low page fault rate, the system will not perform well. For every 100 memory
references (requiring 100 psec), the system will spend 10,000 psec fetching pages

353

354

System Software

from the backing store. Thus the computing system will spend approximately
99 percent of its time swapping pages, and only 1 percent of its time doing
useful work. This total collapse of service because of a high pagmg rate is
known as thrashing.

To avoid thrashing in the 51tuat10n just described, it is necessary for the page
fault rate to be much lower (perhaps on the order of one fault for every 10,000
memory references). At first glance, this might seem to make demand paging
useless. It appears that all of a program’s pages would need to be in memory to
achieve acceptable performance. However, this is not necessarily the:case.
Because of a property called locality of reference, which can be observed inl most
real programs, memory references are not randomly distributed through a pro-
gram’s virtual address space. Instead, memory references tend to be clustered
together in the address space, as illustrated in Fig. 6.21(a). This clustering is due
to common program characteristics such as sequential instruction exectition,
compact coding of loops, sequential processing of data structures, and so on.

Page fault |
2 rate ;
'y
3
4 a A
5

|

|

{

L) i
w

Number of pages in memory

(a) (b)

Figure 6.21 (a) Localized memory references. (b) Effect of Iocahzed
references on page fault rate. :

Operating Systems

Because of locality of reference, it is possible to achieve an acceptably low

page fault rate without keeping all of a program’s address space in real memory..

Figure 6.21(b) shows the page fault rate for a hypothetical program as a function
of the number of the program’s pages kept in memory. The scaling of this curve
varies markedly from one program to another; however, the general shape is
typical of many real programs. Often, as in this example, there is a critical point
W. If fewer than W pages are in memory, thrashing will occur. If W pages or
more are in memory, performance will be satisfactory. This critical point W is the
size of the program’s working set of pages that was mentioned earlier. For fur-
ther discussion of the issues of working-set size and thrashing, see Tanenbaum
(1992) and Deitel (1990).

Demand paging provides yet another example of delayed binding: the
association of a virtual-memory address with a real-memory address is not
made until the memory reference is performed. This delayed binding requires
more overhead (for dynamic address translation, page fetching, etc.). However,
it can provide more convenience for the programmer and more effective use of
real memory. You may want to compare these observations with those made in
the previous examples of delayed binding (Sections 3.4.2, 5.3.3, and 5.4.2).

In this section we have described an implementation of virtual memory
using demand paging. A different type of virtual memory can be implemented
using a technique called segmentation. In a segmented virtual-memory system,
an address consists of a segment number and an offset within the segment
being addressed. The concepts of mapping and dynamic address translation
are similar to those we have discussed. However, in most systems segments
may be of any length (as opposed to pages, which are usually of a fixed length
for the ehtire system). Also, segments usually correspond to logical program
units such as procedures or data areas (as opposed to pages, which are
arbitrary divisions of the address space). This makes it possible to associate
protection attributes such as read only or execute only with certain segments. It
is also possible for segments to be shared between different user jobs.
Segmentation is often combined with demand paging. This combination
requires ia two-level mapping and address-translation procedure. For further
information about segmentation and its implementation, see Deitel (1990) and
Tanenbaum (1992).

6.3 MACHINE-INDEPENDENT OPERATING
SYSTEM FEATURES

In this section we briefly describe several common functions of operating
systems that are not directly related to the architecture of the machine on which
the system runs. These features tend to be implemented at a higher level—that

355

356

System Software

is, further removed from the machine level—than the features we have
discussed so far. For this reason, such topics are not as fundamental to ithe basic
purpose of an operating system as are the hardware-support topics discussed
in the last section. Because of space limitations, these subjects are not discussed
in as much detail as were the machine-dependent features. References are pro-
vided for readers who want to learn more about the topics introduced here.

In Section 6.2.3 we described a technique that can be used toimanage
I/0O operations. Section 6.3.1 examines a related topic at a higher level:
the management and processing of logical files. Similarly, Section 6.3.2 dis-
cusses the problem of job scheduling, which selects user jobs as candidates for
the lower-level process scheduling discussed previously.

Section 6.3.3 discusses the general subject of resource allocatmn by an
operating system and describes some of the problems that may occur.:

6.3.1 File Processing

In this section we introduce some of the functions performed by a typical oper-
ating system in managing and processing files. On most systems, it is possible
for user programs to request I/O by using mechanisms like those described in
Section 6.2.3—for example, constructing channel programs and making SVC

‘requests to execute them. However, this is generally inconvenient. The pro-
‘grammer is required to be familiar with the details of the I/O command codes

and formats. The user program must know the correct physical devicei address.
In the case of a direct-access device such as a disk, the program also must know
the actual address of the desired record on the device. In addition, the program
must take care of details such as waiting for I/O completion, and the buffering
and blocking functions described later in this section. :

The file-management function of an operating system is an intermediate
stage between the user program and the I/O supervisor. This function is illus-
trated in Fig. 6.22. The user program makes requests, such as “Read: the next
record from file F” at a logical level, using file names, keys, etc. The file-
management routine, which is sometimes called an access method, translates
these logical requests into physical 1/O requests, and passes the requests to
the I/0 supervisor. The 1/0 supervisor then proceeds as desaribed in
Section 6.2.3 to manage the physical 1/O operations.

To convert the program’s logical requests into physical I/O requests,
the file manager must have information about the location and structtre of the
file. It obtains such information from data structures we call the catalog and
the file information tables. The actual terms used for these structures, as well as
their formats and contents, vary considerably from one operating system to
another. The catalog relates logical file names to their physical locations and
may give some basic information about the files. The file information table for

Operating Systems
User
program
Logical request
Catalog Record (‘read next record
N from file F”")
\ -
~
~
File
manager
¢
e d
. File e Physical request
information Block (channe! program)
tables
I/O
supervisor
110 interruptT l SIO
Channel

Figure 6.22 1/0 using a file manager routine.

a file gives additional information such as file organization, record length and
format, and indexing technique, if any. To begin the processing of a file, the file
manager searches the catalog and locates the appropriate file information
table. The file manager may also create buffer areas to receive the blocks being
read or written. This initialization procedure is known as opening the file. After
the processing of the file is completed, the buffers and any other work areas
and pointers are deleted. This procedure is called closing the file.

One-of the most important functions of the file manager is the automatic
performance of blocking and buffering operations on files being read or written.
Figure §.23 illustrates these operations on a sequential input file. We assume
the usen program starts reading records at the beginning of the file and reads
each record in sequence until the end. The file logically consists of records that
are 1024 bytes long; however, the file is physically written in 8192-byte blocks,
with each block containing 8 logical records. This sort of blocking of records is
commonly done with certain types of storage devices to save processing time
and storage space.

Figure 6.23(a) shows the situation after the file has been opened and the
user program has made its first read-record request. The file manager has
issued an I/O request to read the first block of the file into buffer B1. The file

357

358

System Software
81|] B2]
Read
first block (a)
Bl 1] 2 [3 als|e] 7| 8 B2
P Read
(b) second block
B1{ 1 2(3j4)5|6]|7]|8 B2
P Read
{c) second block

Bij112(3|4|5}16]|7]|8 B2
e Read
(d) second block
- !
B1 l B2| 9 |1O 11'12[13 14|15 | 16
Read P
third block (e)

Figure 6.23 Blocking and buffering of a sequential file.

i

manager must wait for the completion of this I/O operation before it can
return the requested record to the user. In Fig. 6.23(b), the first block has been
read. This block, containing logical records 1 through 8, is present in buffer B1.
The file manager can now return the requested record to the user program. In
this case, the requested record is returned by setting a pointer P to the first log-
ical record. The file manager also issues a second physical I/O request to read
the second block of the file into buffer B2. i

The next time'the user program makes a read-record request, it is not nec-
essary to wait for any physical I/O activity. The file manager simply advances
the pointer P to logical record 2, and returns to the user. This operation is illus-
trated in Fig. 6.23(c). Note that the physical 1/O operation that reads the
second block into buffer B2 is still in progress. The same process continues for
the rest of the logical records in the first block [see Fig. 6.23(d)]. |

Operating Systems

If the user program makes its ninth read-record request before the completion
of the I/O operation for block 2, the file manager must again cause the pro-
gram to wait. After the second block has been read, the pointer P is switched to
the first record in buffer B2. The file manager then issues another I/O request
to read the third block of the file into buffer B1, and the process continues as
just described. Note that the use of two buffer areas allows overlap of the inter-
nal processing of one block with the reading of the next. This technique, often
called double buffering, is widely used for input and output of sequential files.

The user program in the previous example simply makes a series of read-
record requests. It is unaware of the buffering operations and of the details of
the physical I/O requests being performed. Compare this with the program in
Fig. 6.11, which performs a similar buffering function by dealing directly with
the 1/0 supervisor. Clearly, the use of the file manager makes the user pro-
gram much simpler and easier to write, and therefore less error-prone. It also
avoids the duplication of similar code in a large number of programs.

File-management routines also perform many other functions, such as the
allocation of space on external storage devices and the implementation of
rules governing file access and use. For further discussions of such topics, see
Deitel (1990) and Tanenbaum (1992).

1

6.3.2 Job Scheduling

Job scheduling is the task of selecting the next user job to begin execution. In a
single-job system, the job scheduler completely specifies the order of job exe-
cution. In a multiprogramming system, the job scheduler specifies the order in
which jobs enter the set of tasks that are being executed concurrently.

Figure 6.24(a) illustrates a typical two-level scheduling scheme for a multi-
programming system. Jobs submitted to the system become part of an input
queuey a job scheduler selects jobs from this workload. The jobs selected become
active; which means they begin to participate in the process-scheduling opera-
tion described in Section 6.2.2. This two-stage procedure is used to limit the mul-
tiprogramming level, which is the number of user jobs sharing the CPU and the
other system resources. Such a limitation is necessary in a multiprogramming
system to maintain efficient operation. If the system attempts to run too many
jobs concurrently, the overhead of resource management becomes too large, and
the amount of resources available to each job becomes too small. As a result,
system performance is degraded.

In the scheme just described, the job scheduler is used as a tool to maintain
a desirable level of multiprogramming. However, this ideal multiprogram-
ming level may vary according to the jobs being executed. Consider, for exam-
ple, a system that uses demand-paged memory management. The number of

359

360

System Software

input Job Active)
queue scheduler Dispatcher —p CPU
(a)
Input Job Intermediate Active) ‘
queue scheduler [®] scheduler jobs Dispatcher —# CPU
' Suspended

jobs

(b)

Figure 6.24 (a) Two-level scheduling system and (b) three-level
scheduling system. !

user jobs that can share the real memory is essentially unlimited. Each job can
potentially be executed with as little as one page in memory. However, thrash-
ing occurs when a job does not have a certain critical number of pages in
memory, and the performance of the overall system suffers. Unfortunately, the
number of pages a job requires to prevent thrashing is difficult to predict. In
addition, this critical number of pages may change considerably during the
execution of the program, so the desired level of multlprogrammmg may
change during the operation of the system.

The multiprogramming level can be increased easily enough by simply
invoking the job scheduler, assuming that the input queue is not empty: It is
more difficult to decrease the level of multiprogramming, which would be
done, for example, to stop a system from thrashing. Figure 6.24(b) shows
a three-level scheduling procedure that is commonly used to accomplish this
decrease. The job scheduler and the process scheduler (i.e., the dispatcher)
operate as before. However, there is also an intermediate-level scheduler that
monitors system performance and adjusts the multiprogramming level
as needed. If the multiprogramming level is too high, the intermediate
scheduler lowers it by suspending or rolling out one or more active jobs. If the
multiprogramming level is too low, the intermediate scheduler resumes the
execution of a suspended job or calls on the job scheduler for a new job
to be made active. Such intermediate schedulers can also be used to adjust the
dispatching priority of active jobs, based on observation of the jobs dunng
execution.

Operating Systems

The overall scheduling system is usually based on a system of priorities that
are designed to help meet desired goals. For example, one goal might be to
achieve the maximum system throughput—that is, to perform the most comput-
ing work in the shortest time. Clearly, achieving this goal is based on making
effective use of overall system resources. Another common goal is to achieve the
lowest average turnaround time, which is the time between the submission of
a job by a user and the completion of that job. A related goal for a time-sharing
system is to minimize expected response time, which is the length of time between
entering a command and beginning to receive a response from the system.

There are many other possible scheduling goals for a computing system.
For example, we might want to provide a guaranteed level of service by
limiting the maximum possible turnaround time or response time. Another
alternative is to be equitable by attempting to provide the same level of service
for all. On the other hand, it may be desirable to give certain jobs priority for
external reasons such as meeting deadlines or providing good service to
important or influential users. On some systems it is even possible for users to
get higher priority by paying higher rates for service, in which case the overall
scheduling goal of the system might be to make the most money.

The first two goals mentioned above—high throughput and low average
turnaround time or response time—are commonly accepted as desirable sys-
tem characteristics. Unfortunately, these two goals are often incompatible.
Consider, for example, a time-sharing system with a large number of terminals.
We might choose to provide better response time by switching control more
rapidly among the active user terminals. This could be accomplished by giving
each process a shorter time-slice when it is dispatched. However, the use of
shorter time-slices would mean a higher frequency of context switching opera-
tions, and would require the operating system to make more frequent decisions
about the allocation of the CPU and other resources. This means the operating
system overhead would be higher and correspondingly less time would be
available for user jobs, so the overall system throughput would decline.

On the other hand, consider a batch processing system that runs one job at
a time. The execution of two jobs on such a system is illustrated in Fig. 6.25(a).
Note the periods of CPU idle time, represented by gaps in the horizontal lines
for Jobs 1 and 2. If both jobs are submitted at time 0, then the turnaround time
for Job 1 (T,) is 2 minutes, and the turnaround time for Job 2 (T,) is 5 minutes.
The average turnaround time, T, , is 3.5 minutes.

Now consider a multiprogramming system that runs two jobs concur-
rently, as illustrated in Fig. 6.25(b). Note that the two concurrent jobs share the
CPU, so there is less overall idle time; this is the same phenomenon we stud-
ied in Fig. 6.15. Because there is less idle time, the two jobs are completed in
less total time: 4.5 minutes instead of 5 minutes. This means the system
throughput has been improved: we have done the same amount of work in

361

362

System Software

Job 1= e = T, =
T2=5
Job 2 —_— e e e e Tag =35
] l |]]
1 2 3 4 5

(a)

Job 1~ — — - - T, =45
T2 = 43
Job 2| e —_— —_— —_— Tag = 4.4
l |] |]
1 2 3 4 5

Time (minutes)

(b)

Figure 6.25 Comparison of turnaround time and throughput for (a) a
single-job system and (b) a multiprogramming system.

less time. However, the average turnaround time has become worse: 4.4 tinutes
instead of 3.5 minutes.

Two common job-scheduling policies are first come-first served (FCFS) and
shortest job first (SJF). FCFS tends to treat all jobs equally, so it minimizes the
range of turnaround times. SJF provides a lower average turnaround time
because it runs short jobs much more quickly; however, long jobs may be
forced to wait a long time for service. For examples of these characteristics and
discussions of other scheduling policies, see Deitel (1990).

6.3.3 Resource Allocation

In Section 6.2 we discussed how an operating system might control the use of
resources such as central memory, I/O channels, and the CPU. These resources
are needed by all user jobs, and their allocation is handled automatically by the
system. In this section, we describe a more general resource-allocation function
provided by many operating systems. Such a facility can be used to control the
allocation of user-defined resources such as files and data structures.

The need for a general resource-allocation function is illustrated by the two
programs in Fig. 6.26(a). Both these programs utilize a sequential stack that is
defined by some other program. The external variable STACK indicdtes the

Operating Systems

1 Pl START 0

2 EXTREF STACK, TOP

3 LDS #3 REGISTER S = CONSTANT 3
24 +LDX TOP GET POINTER TO TOP OF STACK
25 ADDR S, X INCREMENT POINTER

26 - +STA STACK, X ADD NEW ITEM TO STACK

27 +STX TOP STORE NEW TOP POINTER

48 END

1 P2 START 0

2 EXTREF STACK, TOP

3 LDS #3 REGISTER S = CONSTANT 3

37 +LDX TOP GET POINTER TO TOP OF STACK
38 +LDA STACK, X GET TOP ITEM FROM STACK

39 SUBR S, X DECREMENT POINTER
40) +STX TOP STORE NEW TOP POINTER

75 END

(a)

Figure 6.26 Control of resources using operating system service
requests.

base address of the stack; TOP contains the relative location of the item
currently on top of the stack. We assume that external references to the vari-
ables STACK and TOP are handled by linking methods like those discussed in
Chapter 3. Program P1 adds items to the stack by incrementing the previous
value of TOP by 3, storing a new item from register A on the top of the stack,
and then saving the new value of TOP (lines 24-27). Program P2 removes
items by loading the value from the top of the stack into register A, and then
subtracting 3 from the value of TOP (lines 37-40). For simplicity, we have not
shown the code needed to handle stack overflow and underflow.

363

364

System Software

1 Pl START

2 EXTREF

3 LDS
22 ILDT
23 SsvC
24 +LDX
25 ADDR
26 +STA
27 +STX
28 SvC
47 SNAME BYTE
48 END

1 P2 START

2 EXTREF

3 LDS
35 DT
36 SvC
37 +LDX
38 +LDA
39 SUBR
40 +STX
41 SVC
74 STKNM BYTE
75 END

Figure 6.26 (cont'd)

0
STACK, TOP
#3

TOP

S, X
STACK, X
TOP

4

C’STACKL'

0
STACK, TOP
#3

TOP
STACK, X
S, X
TOP

4

C’STACK1'’

)

REGISTER S = CONSTANT 3

SET POINTER TO RESOURCE NAME
REQUEST RESOURCE

GET POINTER TO TOP OF STACK
INCREMENT POINTER

ADD NEW ITEM TO STACK

STORE NEW TOP POINTER
RELEASE RESOURCE

REGISTER S = CONSTANT 3

SET POINTER TO RESOURCE NAME
REQUEST RESOURCE

GET POINTER TO TOP OF STACK
GET TOP ITEM FROM STACK
DECREMENT POINTER

STORE NEW TOP POINTER
RELEASE RESOURCE

If processes P1 and P2 are executed concurrently, they may or may not
work properly. For example, suppose the present value of TOP is 12. If P1
executes its instructions numbered 24-27, it will add a new item in bytes 15-17
of the stack, and the new value of TOP will be 15. If P2 then executes its

Operating Systems

instructions 3740, it will remove the item just added by P1, resetting the value
of TOP to 12. This represents a correct functioning of P1 and P2: the two
processes perform their intended operations on the stack without interfering
with each other. Another correct sequence would occur if P2 executed
lines 3740, and then P1 executed lines 24-27.

On the other hand, suppose that P1 has just executed line 24 when its
current time-slice expires. The resulting timer interrupt causes all register
values to be saved; the saved value for register X is 12. Suppose now that the
dispatcher transfers control to P2, which executes lines 37-40. These
instructions will cause P2 to remove the item from bytes 12-14 of the stack
because the value of TOP has not yet been updated by P1; P2 will then set TOP
to 9. When P1 regains control of the CPU, its register X will still contain the
value 12. Thus lines 25-27 will add the new item in bytes 15-17 of the stack,
setting TOP to 15.

The sequence of events just described has resulted in an incorrect
operation of P1 and P2. The item that was removed by P2 is still logically a
part of the stack, and the stack appears to contain one more item than it
should. Several other sequences of execution also yield incorrect results.
Similar problems may occur whenever two concurrent processes attempt to
update the same file or data structure.

Problems of this sort can be prevented by granting P1 or P2 exclusive
control of the stack during the time it takes to perform the updating
operations. Figure 6.26(b) illustrates a common type of solution using
operating system service requests. P1 requests exclusive control of the stack by
executing an SVC 3 instruction. The resource being requested is specified by
register T, which points to the (user-defined) logical name that has been
assigned to the stack. After adding the new item to the stack and updating
TOP, P1 releases control of the stack by executing an SVC 4. P2 performs a
similar sequence of request and release operations.

The operating system responds to a request for control of a resource by

checking whether or not that resource is currently assigned to some other -

process. If the requested resource is free, the operating system returns control
to the requesting process. If the resource is busy, the system places the
requesting process in the blocked state until the resource becomes available.
For example, suppose the! resource STACK1 is currently free. If P1 requests
this resource (line 23), the system will return control directly to P1. As in the
previous discussion, suppose the time-slice for P1 expires after line 24 has just
been executed. Control of the CPU then passes to P2; however, STACK1
remains assigned to P1. Thus P2 will be placed in the blocked state when it
requests STACKI at line 36. Eventually P1 will regain control and complete its
operation on the stack. When P1 releases control of STACK1 (line 28), P2 will
be assigned control of this resource and moved from the blocked state to the

365

366 System Software

1 P3 START 0
2 LDT =R1 REQUEST RES1
3 svC 3
4 LDT =R2 REQUEST RES2
5 svC 3
6 LDT =R2 RELEASE RES2
7 svc 4
8 LDT =R1 RELEASE RES1
9 svC 4

10 R1 BYTE C’RES1 ‘

11 R2 BYTE C’RES2 ’

12 END

-1 P4 START 0
2 LDT =R2 REQUEST RES2
3 svC 3
4 LDT =R1 REQUEST RES1
5 svC 3
6 LDT =R1 RELEASE RES1
7 svc 4
8 LDT =R2 RELEASE RES2
9 sve 4

10 R1 BYTE C'RES1 ’

11 R2 BYTE C'RES2 '

12 END

Figure 6.27 Resource requests leading to potential deadlock.

Operating Systems

ready state. It can then continue with its updating operation when it next
receives control of the CPU. You should trace through this sequence of events
carefully to see how the problems previously discussed are prevented by this
scheme.

Unfortunately, the use of request and release operations can lead to other
types of problems. Consider, for example, the programs in Fig. 6.27. P3 first
requests control of resource RES]; later, it requests resource RES2. P4 utilizes
the same two resources; however, it requests RES2 before RES].

Suppose P3 requests, and receives, control of RES1, and that its time-slice
expires before it can request RES2. P4 may then be dispatched. Suppose P4
requests, and receives, control of RES2. This sequence of events creates a
situation in which neither P3 nor P4 can complete its execution. Eventually,
P4 will reach its line 5 and request control of RESI; it will then be placed
into the blocked state because RESI is assigned to P3. Similarly, P3 will
eventually reach its line 5 and request control of RES2; P3 will then be blocked
because RES2 is assigned to P4. Neither process can acquire the resource it
needs to continue, so neither process will ever release the resource needed by
the other.

This situation is an example of a deadlock: a set of processes each of which
is permanently blocked because of resources held by the others. Once a
deadlock occurs, the only solution is to release some of the resources cur-
rently being held; this usually means canceling one or more of the jobs
involved. There are a number of methods that can prevent deadlocks from
occurring. For example, the system could require that a process request all its
resources at the same time, or that it request them in a particular order (such
as RES1 before RES2). Unfortunately, such methods may require that
resources be tied up for longer than is really necessary, which can degrade the
overall operation of the system. Discussions of methods for detecting and
preventing deadlocks can be found in Singhal and Shivaratri (1994) and
Tanenbaum (1992).

The problems we have discussed in this section are examples of the more
general problems of mutual exclusion and process synchronization. Discussions of
these problems, and techniques for their solution, can be found in Singhal and
Shivaratri (1994) and Tanenbaum (1992).

6.4 OPERATING SYSTEM DESIGN OPTIONS

In this section we briefly describe some important concepts related to the
design and structure of an operating system. Sections 6.4.1 and 6.4.2 discuss
operating systems for multiprocessors and distributed systems, and describe
some options for the division of tasks between the processors.

367

368

System Software

6.4.1 Multiprocessor Operating Systems

Our previous discussions of operating systems have primarily conicerned
machines with one central processing unit (CPU). In this section we: briefly
describe some design alternatives for multiprocessor operating systems.

An operating system for a machine with multiple processors must perform
the same basic tasks we have discussed for single-processor systems. Of
course, some of these functions may need to be modified. For example, the
process scheduler may have more than one CPU to assign to user jobs, so
more than one process might be in the running state at the same time. There
are also a number of less obvious issues, many of which are related to the
overall organization of the system.

Figure 6.28 illustrates two possible types of multiprocessor architecture. Ina
loosely coupled system, each processor has its own logical address space and its
own memory (and possibly other resources). The processors can communicate
with each other, but each can directly access only its own local memory. In a
tightly coupled system, all processors share the same logical address space, and
there is a common memory that can be accessed by all processors. These types

CPU CPU CPU CPU

Memory Memory Memory Memory
(a) Loosely coupled
CPU CPU CPU CPU
|
Memory
(b) Tightly coupled

Figure 6.28 Types of multiprocessor architecture.

Operating Systems

of multiprocessor organization are sometimes referred to as distributed memory
systems and shared memory systems. However, it is possible to have an organi-
zation:in which the memory is physically distributed but logically shared. (See,
for example, the description of the Cray T3E architecture in Section 1.5.3.)

Figure 6.29 illustrates the three basic types of multiprocessor operating
system. In a separate supervisor system, each processor has its own operating
system. There are some common data structures that are used to synchronize
communication between the processors. However, each processor acts largely
as an independent system. Separate supervisor systems are relatively simple,
and the failure of one processor need not affect the others. However, the inde-
pendence between processors makes it difficult to perform parallel execution
of a single user job. .

In a master-slave system [Fig. 6.29(b)], one “master” processor performs all
resource management and other operating system functions. This processor
completely controls the activities of the “slave” processors, which execute user
jobs. Essentially, the slave processors are treated as resources to be scheduled
by the master. Thus it is possible to assign several slave processors to execute a
user job in parallel. This type of operating system is rather similar to the
single-processor systems we have discussed. Synchronization is easy, because
all resources are controlled by the master processor.

Processor Processor Processor
0S 0S 0OS
i (a) Separate Supervisor
Slave PMaS‘e' Slave
Processor rocessor Processor
0S
(b) Master-Slave
I T T T T T T T T T T T T T T T T S e e e - i
<4+ 0S

(c) Symmetric

Figure 6.29 Types of multiprocessor operating systems.

369

370

System Software

The most significant problem with master-slave multiprocessing systems is
the unbalanced use of resources. For example, the master processor might be
overloaded by requests for operating system services, which could cause the
slave processors to remain idle much of the time. In addition, any hardware
failure in the master processor causes the entire system to stop functioning.
Such problems can be avoided by allowing any processor to perform any func-
tion required by the operating system or by a user program. This approach,
called symmetric processing, is illustrated in Fig. 6.29(c). Since all processors
have the ability to perform the same sets of functions, the potential bottlenecks
of a master-slave system are avoided. In addition, the failure of any one
processor will not necessarily cause the entire system to fail. The other proces—
sors can continue to perform all the required functions.

In a symmetric multiprocessing system, different parts of the operating sys-
tem can be executed simultaneously by different processors. Because of this,
such a system may be significantly more complicated and more difficult to
design than the other types of operating systems we have discussed. For
example, all processors must have access to all the data structures used by the
operating system. However, the processors deal with these data structures inde-
pendently of one another, and problems can arise if two processors attempt to
update the same structure at the same time (see Section 6.3.3). Symmetric
multiprocessing systems must provide some mechanism for controlling access
to critical operating system tables and data structures. The request and release
operations described in Section 6.3.3 are not sufficient to handle this problem
because two different processors might perform request operations
simultaneously. The solution usually requires a special hardware feature that
allows one processor to seize control of a critical resource, locking out all other
processors in a single step. Discussions of such mechanisms, and further infor-
mation about multiprocessor operating systems, can be found in Singhal and
Shivaratri (1994).

Section 6.5.4 describes an example of a symmetric multiprocessing operat-
ing system running on a machine with a tightly coupled architecture.

6.4.2 Distributed Operating Systems

Figure 6.30 illustrates two different approaches to operating systems for a net-
work of computers. In Fig. 6.30(a), each machine on the network has its own
independent operating system. These operating systems provide a communica-
tion interface that allows various types of interaction via the network. A user of
such a system is aware of the existence of the network. He or she may login to
remote machines, copy files from one machine to another, etc. This approach is
often called a network operating system. Except for the network interface, such an
operating system is quite similar to those found on a single-computer system.

Operating Systems

A distributed operating system [Fig. 6.30(b)] represents a more complex type
of network organization. This kind of operating system manages hardware and
software resources so that a user views the entire network as a single system.
The user is not aware of which machine on the network is actually running a
program or where the resources being used are actually located. In fact, many
such systems allow programs to run on several processors at the same time.

Distributed operating systems have many advantages over traditional sys-
tems. The sharing of resources between computers is made easier—in fact, the
user need not even be aware that sharing is taking place. A distributed system
can provide improved performance by distributing the load between comput-
ers and executing parts of a task concurrently on several processors. Such a
system can be more reliable, because the failure of one component need not
affect the rest of the system. Likewise, adding additional processors or other
resources can improve performance without requiring a major change in the
system configuration.

<)
Files Files
Processor Processor
0s —— 0s
Memory Memory
<
Files
Processor
oS
Memory

(a) Network Operating Systems

Figure 6.30 Network and distributed operating systems.

371

372 System Software

Processor
Processor

Kernetl

Kernet \

Memory

Processor

Kernel

(b) Distributed Operating Sytems

Figure 6.30 (contd)

The basic issues in a distributed operating system are similar to those in
single-processor and multiprocessor systems. However, the solutions to prob-
lems such as process synchronization and the sharing of files and data are
more complex. The machines controlled by a distributed operating system
generally do not have access to a shared memory. Communication delays are
unpredictable, and there is often no common time reference that can be used
as a system clock. The machines on the network may be of different types, and
they may have significantly different architectures. For example, the floating-
point data formats and the choice of byte ordering may vary from one
machine to another. ;

Operating Systems

In order to give the appearance of a unified system, a distributed operating
system must provide a consistent interface for users and their programs. For
example, the mechanisms for requesting resources, communicating between
processes, and making other types of operating system service requests must
be the same on all machines in the system. This normally means that the same
basic operating system kernel must be used on all machines. These design
goals present a substantial challenge to system designers.

Further information about distributed operating systems can be found in
Singhal and Shivaratri (1994). An example of one such system is described in
Section 6.5.5 of this text.

6.4.3 Object-Oriented Operating Systems

This section describes how the concepts of object-oriented design and program-
ming can be applied to operating systems. (If you are unfamiliar with object-
oriented concepts, you may want to review Section 8.4 before proceeding.)
Figure 6.31 illustrates the general structure of an object-oriented operating
system. Most of the system is implemented as a collection of objects. Obijects

Directory

Network

Transport

Memory
Manager

Figure 6.31 Object-oriented operating system structure.

373

374

System Software

belong to classes that designate some of the properties of the object. For example,
there may be one class for file objects, one for processes, etc. Each object encap-
sulates a data structure and defines a set of operations on that data structure.
For a file object, for example, typical operations are reading, writing, appending,
and deleting. The operations defined for objects are called methods. Wheén a user
program (or a part of the operating system) needs to perform some operation on
an object, it does so by invoking one of the methods defined for that object.

In a typical object-oriented operating system, this object-based model is
implemented using processes called servers or object managers. When a process
wants to invoke a method on an object, it sends a message to the server that
manages that object. Servers also are responsible for creating new objects and
deleting objects that are no longer needed. The kernel of the operating system
is relatively small and simple. In a typical system, this kernel mediates com-
munication (i.e., invoking methods on objects), provides some simple process
scheduling functions, and does little else. Most of the functions that we nor-
mally consider part of the operating system, such as memory management
and network interfaces, are performed by objects. .

The object-oriented approach to operating system design has many advan-
tages. The fundamental operations performed by all user processes and most
operating system routines consist of invoking methods on objects. By invoking
methods, processes can request operating system services, send messages to
other processes, and perform remote procedure calls (running processes on
other machines in a network). These three functions, which are implemented
using different mechanisms in conventional operating systems, are all handled
in the same way in an object-oriented system.

Object-oriented design provides a simple and natural approach to con-
structing distributed operating systems. From the user ’s point of view, invok-
ing a method on an object at a remote machine on the network is exactly the
same as invoking a method on a local object. Thus, distributed applications
require no special handling. The implementation of the method (via an object
manager or server) may be different on different machines. However, the
details of the implementation are hidden from the invoking process—it sees
only the interface by which the invocation is requested. Thus a distributed sys-
tem that includes a variety of machines (possibly with widely differing archi-
tectures) presents no special problems. (

The problem of providing security is also simplified. The actions that can
be performed by a user process can be controlled by a system of capabilities. A
capability gives a process the right to invoke a particular method on a speci-
fied object. These capabilities are validated by the kernel when it is involved in
an invocation request. Since all access to objects is via invoking methods, this
means that the part of the system that must be “trusted” is very small (i.e., the
part of the kernel that mediates invocations). ‘

Operating Systems

Object-oriented operating systems are a relatively new development.
However, many computer scientists believe that such systems will be widely
used in the near future. Further discussions and examples of object-oriented
operating systems may be found in Singhal and Shivaratri (1994) and
Tanenbaum (1992). One example of such a system is briefly described in
Section 6.5.5 of this text.

6.5 IMPLEMENTATION EXAMPLES

In this section we present brief descriptions of several real operating systems.
These systems have been chosen to illustrate some of the variety of design and
purpose in such software. As in our previous examples, we do not attempt a
complete high-level description of any system. Instead, we focus on some of
the more interesting or unusual features provided and give references for
readers who want more information.

Section 6.5.1 discusses MS-DOS, which is a popular operating system for
IBM-compatible personal computers. Section 6.5.2 describes Windows 95, a
more sophisticated PC operating system that provides many more features
than MS-DOS. Section 6.5.3 discusses SunOS, a popular version of the UNIX
operating system that runs on SPARC, x86, and PowerPC systems.

The last two examples in this chapter are specialized systems that were
designed for more complex architectures. Section 6.5.4 describes UNICOS/mk,
Cray’s multiprocessor operating system for the T3E.

6.5.1 MS-DOS

Version 1 of MS-DOS was written in 1981 by Microsoft for use with the
newly announced IBM personal computer. This first version consisted of
about 4000 lines of assembler language code and ran in 8KB of memory. The
original PC, which was based on the Intel 8088 chip, could address a maximum
of 1 megabyte (IMB) of memory.

As the PC evolved, so did MS-DOS. Version 2, released in 1983, ran on the
IBM PC/XT. It supported a hard disk drive, and incorporated many features
that were similar to ones found in UNIX. Version 3, released in 1984, was
designed for use with the new IBM PC/AT:; this computer was based on the
Intel 80286 chip. Version 4 (released in 1988), Version 5 (1991), and Version 6
(1993) provided further enhancements. They also included support for the
more advanced CPU chips that were available (80386, 80486, and Pentium).

By modern standards, MS-DOS is technically obsolete. For example, it can
run only one process at a time and can make only very limited use of memory

375

376

System Software

in excess of 1IMB. However, it remains the most widely used operating system
in the world, and there are a vast number of applications that run under its
control. This software base helps to explain the continued popularity of
MS-DOS, and the reluctance of many users to change to more modern systems.

Figure 6.32 shows the overall structure of MS-DOS. The BIOS (Basic
Input/Output System) contains a collection of device drivers that correspond
to the specific hardware components being used. MS-DOS performs input and
output by invoking the BIOS routines; this isolates the rest of the operating
system from the details of the hardware. The kernel provides service rgutines
to implement memory management, process management, and the file sys-
tem. The shell is the interface that interprets user commands and calls other
operating system routines to execute them. MS-DOS provides a shell that
interprets command lines and an alternative screen-oriented interface. Users
can also install their own special-purpose shells.

MS-DOS does not support multiprogramming. A process can create a chlld
process via a system call. However, the parent process is automatically
suspended until the child process terminates. There may be many processes
in memory at a particular time; however, only one of them can be active.
All the rest will be blocked, waiting for a child to finish. Compare this with a
multiprogramming system, in which the CPU can be switched among a num-
ber of active processes. ‘

The lack of multiprogramming makes process management in MS-DOS
relatively simple. Because of this restriction, however, MS-DOS cannot effec-
tively support features such as background print spooling.

Kernel

BIOS

Hardware

Figure 6.3:2 Structure of MS-DOS.

Operating Systems

Figure 6.33 illustrates the memory model used in MS-DOS. There are four
different areas of memory, each of which can be used in different ways.
Conventional memory (the first 640KB) is where MS-DOS and application pro-
grams'normally run. Upper memory usually contains device drivers (part of the
BIOS). Some of the locations in this area of memory may actually be ROM
(read-only memory) that is part of a BIOS chip or other special hardware.

The division between conventional memory and upper memory was part
of the design of Version 1 of MS-DOS. Beginning with the 80286, the chips
used in PCs were capable of addressing more than 1IMB of memory. However,
this limitation was retained in MS-DOS to provide compatibility with earlier
hardware and software.

Because of the way MS-DOS is implemented, it can actually directly
address up to 64KB beyond the original 1IMB limit. (This is accomplished by
having a segment register that contains an address close to 1MB, and specify-
ing an offset of up to 65,535.) This additional 64KB of directly addressable
memory is called high memory. The memory above 1MB (including the high
memory area) is called extended memory.

MS-DOS cannot effectively use most of the extended memory to run pro-
grams. It is possible to load parts of MS-DOS into high memory; this makes
more of the conventional memory addresses available for application pro-
grams. Parts of the extended memory can be mapped into unused addresses
in the' upper memory area, using the virtual-memory hardware on 80386 and
higher CPUs. This makes locations in upper memory that are not needed for
device drivers available for ordinary programs. MS-DOS can also treat
extended memory as a separate device, in effect using it to simulate a disk.

These techniques are of some help in making more memory available to
application programs. Several other methods have also been devised.
However, the basic 1MB restriction still remains; this is one of the most severe
limitations of MS-DOS.

J Extended
T~ Memory
IMB + 64KB |y
High Memo
MB—2 Y
Upper
Memory
640KB
Conventional
Memory
0

Figure 6.33 MS-DOS memory model.

377

378

System Software

Because it is intended for a single-user personal computer, MS-DOS does
not provide the protection found on multi-user systems. Users are free to
install their own interrupt-processing routines and device drivers. It is also
possible for a program to manipulate system data structures to “trick” MS-
DOS into providing undocumented services. These practices can add flexibil-
ity to the system, but also have the potential to cause serious problems.

Further information about MS-DOS can be found in Norton (1994) and
Schulman (1993).

6.5.2 Windows 95

Windows 95 is the most recent version of Microsoft’s “window-based” operating
systems. Previous members of this family include Windows 3.1 and Windows
NT. These systems provide a graphical user interface and desktop environment
similar to those found on Apple’s Macintosh computers. They are:more
advanced in design than MS-DOS, and enable programs to make better use of
modern CPU hardware. For example, Windows 95 supports multiprogramming
and allows user programs access to a very large virtual-memory space.

Figure 6.34 shows the overall structure of Windows 95. Most application
programs run under the control of the system virtual machine, which provides
hundreds of application program interface (API) functions. Windows 95 applica-
tion programs can use a full 32-bit address space; these are referred to as
Win32 applications. Support is also provided for older Windows applications

Win32 Win16é MS-DOS \
Application Application Application

? Ring 3
MS-DOS
System Virtual Machine Virtual LU
Machine)
L _
Base File Mangement Virtual Machine
System Subsystem Manager Ring 0

Figure 6.34 Overall structure of Windows 95.

Operating Systems

that used a 16-bit address space (Win16 applications). The shell is a Win32 appli-
cation that provides the essential user interface to the system.

Windows 95 also supports the execution of older MS-DOS programs. Each
of these runs under control of a separate MS-DOS virtual machine. These virtual
machines provide the same environment as a PC running MS-DOS, including
the limitations on memory that can be addressed.

The Windows 95 virtual machines are supported by the base system, which
is the actual underlying operating system. The x86 hardware provides four
different levels of privilege, called protection rings. The base system runs in
Ring 0 (the highest level of privilege), which is similar to the supervisor mode
discussed earlier in this chapter. The virtual machines and application
programs run in Ring 3, which generally corresponds to user mode. The inter-
mediate levels of privilege (Rings 1 and 2) are not used in Windows 95.

The virtual machine manager is the most complex part of Windows 95, and
the real “core” of the operating system. Each virtual machine (the system VM
and MS-DOS VMs) has its own virtual address space and execution context
(for example, register contents and current instruction address). There is also a
set of resources available to applications running on each virtual machine. For
example, Windows applications running on the system VM can call functions
from the application programming interface. Applications running on an MS-
DOS VM can use the MS-DOS interrupt interface, and may try to access the
hardware directly. The virtual machine manager supports the virtual machines
and provides fundamental low-level operating system services such as CPU
scheduling, memory management, and interrupt handling.

Scheduling in Windows 95 is based on processes and threads. Each MS-DOS
virtual machine is a process, and each Windows application running in the
system virtual machine is a process. Thus a process in Windows 95 generally
corresponds to an application program. Each process has its own memory
space, execution context, and other resources.

'A thread represents the execution of code associated with a process. Each
process begins with one thread. MS-DOS and Win16 applications always have
a single thread of execution. However, Win32 applications can create new
threads to execute different parts of the code of the process concurrently. For
example, a word processor could create a new thread to handle the printing of
a document, while the user could continue editing using the original thread.
Multiple threads within a process do not have separate memory spaces.
Instead, each thread shares the memory and other resources of the parent
process. This means that setting up a new thread, or switching between
thteads of the same process, is relatively efficient.

CPU scheduling is based on a system of priorities. At any given time, the
highest-priority thread that is not blocked is scheduled for execution. If there
is more than one highest-priority thread, they share the CPU in round-robin

379

380

System Software

fashion. The scheduler recalculates priorities for every thread in the system at
fixed intervals. These priorities are based on several different considerations;
the overall goal of the scheduling process is to provide a smoothly running
system with good response time. Thus, this approach is similar to the interme-
diate-level scheduling we discussed in Section 6.3.2. For example, the priprity
of a thread may be temporarily raised because of a keystroke or mouse click to
be processed by that thread. The increased priority gradually returns to its
usual value over a short time interval. ‘

There are several different levels of memory management in Windows 95.
The system virtual machine runs in a virtual address space of 4 gigabytes
(4GB). Each MS-DOS virtual machine runs in a virtual address space of IMB.
These virtual address spaces are all separate—each virtual machine runs in its
own private address space, and is unable to interfere with any other VM. |

Each Win32 application also runs in a 4GB address space. The addresses
from 4MB to 2GB are private memory, which is not accessible by other appli-
cations. The rest of the address space is shared among all processes in the sys-
tem VM. For example, the region from 2 to 3GB can be used to create memory
mapped files that are shared between applications. The region from 3 to 4GB is
reserved for the base system of Windows 95. :

Win16 applications run in a similar 4GB address space. However, the same
address space is shared by all Win16 applications—that is, there is no private
memory for an application. This provides compatibility with previous ver-
sions of Windows, in which Winl6 applications could refer to each others’
memory. MS-DOS applications run in the 1MB virtual address space provided
by the MS-DOS virtual machine.

All of these address spaces are kept separate by a system of virtual
memory implemented with demand paging. When control is switched from
one virtual machine or application to another, a different page map table is
activated. Because of this, the same virtual address in different applicatipns
will be mapped into different physical locations in memory. Replacement of
pages in the physical memory is governed by a least recently used (LRU)
algorithm.

The Windows 95 file management system supports multiple file systems
that can be concurrently accessed. It is a layered system, with an application
program interface at the highest level. Additional components can be installed
at many of the levels, to customize the file system and provide specialized
services. Network support is also implemented via the file management
system. This approach to file management is one of the major new components
of Windows 95. In previous versions of Windows, file management serviges
were provided by the underlying MS-DOS operating system.

Further information about Windows 95 can be found in Pietrek (1995) and
King (1994). :

Operating Systems

6.5.3 Sun0OS

The SunOS operating system is the foundation of Sun’s Solaris operating envi-
ronment. Solaris consists of three major components: the SunOS operating sys-
tem, the ONC distributed computing environment, and the OpenWindows
development environment. ONC provides support for a distributed file sys-
tem, a network naming service, and a remote procedure call facility.
OpenWindows includes productivity tools and utilities that manage system
resources, and provides an environment for developing and running applica-
don programs. SunOS is the underlying operating system that supports the
other components of Solaris.

The original Solaris was developed for SPARC machines. Later versions,
released in 1995 and 1996, can run on UltraSPARC, Pentium Pro, and
PowerPC computers. This portability makes it easier to create applications for
multiple hardware architectures and for networked systems that contain dif-
ferent types of machines. Further information about Solaris can be found in
Becker et al. (1995).

This section focuses on the SunOS operating system, which is based on
UNIX Svstem V Release 4 (SVR4). We begin by discussing the development
and design of UNIX, and then briefly survey the extensions included in SunOS.

The original versions of UNIX were developed at AT&T Bell Laboratories
in the early 1970s. The first commercial release from Bell Labs was System III
in 1982. However, several other versions were also in use, both within AT&T
and by various universities and research labs. Microsoft’s XENIX operating
s_vstém was based on AT&T UNIX, with some features from other sources.

The University of California, Berkeley, became involved with UNIX in
1974. Several versions of the Berkeley System Distribution of UNIX (BSD UNIX)
were developed and released. BSD UNIX was widely used in universities, and
many computer vendors used it as a foundation for development of their own
UNIX variants. For example, the original SunOS was based on version 4.2 BSD.
Many of the enhancements developed at Berkeley were also incorporated into
later releases of AT&T System V.

The existence of several different variants of UNIX created many problems
for software developers. In the middle 1980s an IEEE working group, in
conjunction with a group of UNIX users, proposed a set of standards for UNIX
systems known as POSIX (Portable Operating System Interface for Computer
Environments). The POSIX standards combined features from the most popu-
lar versions of UNIX into a single package. These standards have been
endorsed by the National Institute of Standards and Technology as part of the
Federal Information Processing Standard (FIPS).

UNIX System V Release 4 (SVR4) corresponds to the POSIX standards, and
also to a number of other important standards. Thus, it represents a modern

381

382

System Software

unified version of the UNIX system. Unless otherwise stated, the following
discussions in this section pertain to SVR4.

Figure 6.35 shows the overall structure of a UNIX system. The kernel iso-
lates the rest of the system from the hardware, and provides services such as
interrupt handling, memory management, file management, and process
scheduling. Application programs interact with the kernel using a set of
approximately 100 system calls. For example, a program may use a system call
to open a file or to create a new child process.

The shell is the basic user interface to the system. When a user enters a com-
mand at a terminal, the shell interprets the command and calls the appropriate
program or operating system routine. UNIX provides several hundred utility
programs that perform operations such as text editing, sending mail, and dis-
playing on-line documentation. These utilities are invoked via the shell; to the
user, they appear to be commands built into the operating system.

Process scheduling in UNIX is governed by a system of priorities. By default,
the scheduler implements a time-sharing policy. The goals of this policy are to
give good response time to interactive processes and to provide good overall
system throughput. With this time-sharing policy, all system processes have
higher priority than user processes. Priorities of user processes depend on the
amount of CPU time they have used. Processes that have used large amounts of
CPU time are given lower priority than those that have used less time.

The scheduler also provides an optional real-time scheduling policy. With
this policy, users can set fixed priorities for processes, which are not changed
by the system. This allows real-time processes to respond quickly to time-

Shell Application
program
Kernel
Hardware
Utilities

Figure 6.35 Overall structure of UNIX.

Operating Systems

critical events. The highest-priority real-time process always gets the CPU as
soon as it is ready to run, even if there are system processes waiting.

Processes can create other processes by using the fork system call. On return
from this system call, the parent and child process have identical copies of their
user-level context. The value returned by the fork call can be tested to determine
whichis the parent process and which is the child process. The fork is usually
followed by an exec system call, which causes the child process to execute some
other program or command. The parent process can synchronize its execution
with the termination of the child process by using the wait system call.

UNIX also provides three other ways for processes to communicate with
each other. One set of system calls allows processes to send and receive mes-
sages. A second set implements integer-valued semaphores that can be set and
tested by different processes. A third group of system calls allows processes to
define shared regions of memory.

Each process has a separate virtual address space. This virtual memory is
implemented via demand paging. Pages in physical memory are selected for
replacement using a modified working-set policy. A page that has not been ref-
erenced in a certain length of time is considered no longer to be in the working
set of any process; thus it becomes a candidate for replacement. It is possible
that the working sets of the processes being run might require more pages
than can fit into memory. If this happens, one or more of the processes is temn-
porarily suspended. Pages being used by these processes are removed from
memory to make more room available.

UNIX organizes files into a hierarchical file system, with files grouped
together under directories. Links can be established to allow a single file to be
accessed by different names, or to appear in different directories. A pipe is
a special type of file that can be used to connect the output of one process
directly to the input of another. Physical devices are treated in the same way as
files, and can be accessed using the same system calls.

The current version of SunOS adds several enhancements to the capabili-
ties of SVR4. Symmetric multiprocessing is supported; multiple threads within
the kernel can execute concurrently on different processors. Support is also
provided for application-level multithreading. Extensions to the real-time
scheduling policy have been implemented, with the goal of providing deter-
ministic scheduling response. A number of security enhancements have been
added, including several different user authentication modes. Tools are
also provided to assist system administrators in monitoring and improving
security.

Further information about SVR4 can be found in Rosen et al. (1990) and
UNIX System Laboratories (1992). Additional specific information about
SunOS can be found in Sun Microsystems (1995c).

383

384

System Software

6.5.4 UNICOS/mk

UNICOS/mk is Cray’s operating system for the T3E multiprocessor. You may
want to review the description of the T3E in Section 1.5.3 before proceeding.

The user and application program interfaces of UNICOS/mk are based on
UNIX. UNICOS/mk complies with the latest POSIX standards, as well as with
a number of other industry standards. However, the method of implementa-
tion is quite different from the normal UNIX structure discussed in the- previ-
ous section (see Fig. 6.35).

Figure 6.36 shows the overall structure of UNICOS/mk. The system
consists of a microkernel and a number of servers. The microkernel includes a
minimal set of low-level services, and supports the basic machine-dependent
aspects of the system. Thus it serves to isolate the rest of the system from
the underlying hardware. The microkernel also provides a message-passing
capability for transferring messages between the microkernel and the servers,
and between the servers themselves. :

The microkernel of UNICOS/mk is substantially smaller and simpler than
the kernel of a conventional operating system. Most of the functions that are
normally associated with the UNIX kernel are provided by specialized servers.
Servers can run either in user space or in supervisor space. User space servers
provide more insulation from possible errors in other servers, while supervi-
SOr space servers can offer better performance. :

A T3E system is configured with two different types of processing elements—
user PEs and system PEs. From a hardware perspective, these two types of PEs are
identical. However, user PEs are dedicated to running application programs, and
system PEs are dedicated to operating system services. The configuration also
includes redundant PEs, which are set aside in case of the failure of a user PE,

hell
Application She

Microkernel

Figure 6.36 Overall structure of UNICOS/mk.

Operating Systems

The functions of UNICOS/mk are distributed among user and system PEs.
Each user PE contains a microkernel and a server that provides process
management functions. Many other system requests, such as memory
allocation, can also be handled locally. Global services, such as scheduling, file
space allocation, security, and I/O management, are assigned to system PEs.

The T3E architecture was designed to be scalable. As we discussed in Section
1.5.3, processing elements can be added as needed to increase the computing
power of the system. The distribution of operating system functions among the
PEs also provides a scalable operating system environment. The number of sys-
tem PEs increases as the size of the system increases. For every 16 user PEs there
is, on average, one additional system PE. Thus the capability and capacity of the
operating system grow to effectively support the overall system configuration.

The scalability of UNICOS/mk extends to support I/O operations as well.
Globeal file servers on system PEs are used for functions such as opening and
closing files. Local file servers on user PEs can perform direct servicing of read
and write requests. However, a single “distributed” I/O request from one PE can
also generate parallel data transfers that involve other PEs. The management of
the overall file system can be distributed among multiple system PEs.

The T3E is a multiprocessor system that may have hundreds or thousands
of PEs. However, UNICOS/mk presents users with a single “system image.”
For example, an interactive user logs into the system as though it were a single
processor. During the interactive session, serial and parallel processes may run
on many different PEs. Operating system functions may be performed using
other system PEs. However, this distribution of work among PEs is completely
transparent to the user.

Likewise, the T3E system is managed as a unified set of resources.
UNICOS/mk is a single operating system distributed among the PEs, not a sys-
tem replicated on each PE. This simplifies overall resource management, the
users’ view of files and other objects, and the system administrators’ tasks.

Further information about UNICOS/mk can be found in Cray Research
(1995¢).

6.5.5 Amoeba*

The Amoeba operating system was developed at the Vrije Universiteit in
Amsterdam. This research effort was aimed at understanding how to build a
true distributed operating system. Amoeba connects multiple computers, of
different types and at different locations, to provide the user with the illusion
of a single powerful time-sharing system.

* Adapted from “Experiences with the Amoeba Distributed Operating System” by A. S.
Tanenbaum et al., from Communications of the ACM, Vol. 33, No. 12, pp. 46-63, December 1990.
Copyright 1990, Association for Computing Machinery, Inc.

385

386

System Software

The Amoeba architecture consists of several different components, as illus-
trated in Fig. 6.37. The workstations are essentially intelligent terminals, on
which users can carry out editing and other similar tasks. The pool processors
are a group of CPUs that can be dynamically allocated to perform tasks, and
then returned to the pool. For example, suppose that installing a certain com-
plex program requires six different compilations. Six processors from the pool
could be assigned to do these compilations in parallel. Similarly, an applica-
tion such as a chess-playing program could use many pool processors at the
same time to perform its computations.

Each of the specialized servers shown in Fig. 6.37 is dedicated to perform-
ing some specific function. For example, there are file servers, directory servers,
and database servers. In some cases, there are multiple servers that can provide
the same function. The gateways can be used to link Amoeba systems at differ-
ent sites into a single uniform system. These gateways isolate Amoeba from the
various protocols that must be used over wide area networks.

Amoeba is an object-based system. It can be viewed as a collection of
objects, each of which supports a set of operations that can be performed. For a
file object, for example, typical operations are reading, writing, appendmg,
and deleting. Both hardware and software objects exist.

Access to objects is controlled by a system of capabilities. A capability is a
kind of ticket that allows the holder of the capability to perform certain
specified actions on an object. For example, a user process might have a
capability for a file that permits it to read the file, but not to modify it.
Capabilities are protected with special cryptographic checksums, to prevent
users from tampering with them.

This object-based model is implemented using a client-server scheme.
Associated with each object is a server process that manages that object. When

Processor Pool Workstations

)

MU_U_U_L . - i Specialized servers

(file, database, etc.)

Figure 6.37 The Amoeba architecture (Adapted from “Experiences with
the Amoeba Distributed Operating System” by A. S. Tanenbaum et al.,
from Communications of the ACM, Vol. 33, No. 12, pp. 46-63, December
1990. Copyright 1990, Association for Computing Machinery, Inc.).

Operating Systems

a user process (the client) wants to perform an operation on an object, it sends
a request message to the server that manages that object. The request contains
a specification of the operation to be performed, and a capability that autho-
rizes the client to perform that operation. The server sends a reply message
when the requested operation has been completed. This combination of
request and reply, together with the associated passing of parameters, is often
referred to as remote procedure call.

Server processes are normally run on the specialized server machines
shown in Fig. 6.37. However, a server is a logical part of the system, not
necessarily related to any physical machine. In general, a client is unaware of
the location at which a requested service is provided. The system administrator
makes decisions about which servers are to run on which computers, and these
decisions can be changed at any time. This allows for system tuning to improve
performance, and for fault-tolerant operation in case of processor failure.

The Amoeba system itself is structured along the same lines as UNI-
COS/mk (see Fig. 6.36). All of the machines run the same microkernel. This
microkernel handles the sending and receiving of messages, and provides
some low-level memory management and process-scheduling functions.
However, most of the operations that are normally associated with an operat-
ing system are provided by servers that manage objects.

For example, processes in Amoeba are implemented as objects. An existing
process that wants to create a new child process begins by constructing
a process descriptor. This descriptor contains information such as the type
of hardware required and a description of the address space to be used by the
new process. The descriptor is then sent to the memory and process server on
the machine where the child process will be run. The server returns to the parent
process a capability that allows it to control the execution of the child process.

Many of the servers in Amoeba are just ordinary user processes. For example,
the file system server is a collection of user processes that manage file objects.
Users who are not happy with the standard file system dre free to write and
use their own. This provides a high degree of flexibility.

Further information about Amoeba can be found in Tanenbaum (1992) and
Tanenbaum et al. (1990).

EXERCISES
Section 6.2

1. In Section 6.2.1, we assumed that the occurrence of an interrupt
inhibited all other interrupts of equal or lower priority. Would the
scheme described in the text work if we simply inhibited all other
interrupts of the same class?

387

388

System Software

10.

Suppose the processing of a certain type of interrupt is unusually
complex. It might not be desirable to leave other interrupts inhibited
for the length of time required to complete the interrupt processing.
Suggest a method of interrupt handling that would allow all inter-
rupts to be enabled during most of the interrupt processing.

What are the advantages of having several different classes of iner-
rupts, instead of just one class with flag bits to indicate the interrupt

type?

Suppose there is a limit on the total amount of CPU time a job is
allowed to use. This limit can vary from one job to another. What
part of the operating system would be responsible for enforcing this
time limit, and how might such a function be accomplished?

On SIC/XE, setting the IDLE bit of SW to 1 places the CPU into an
idle status. Is such a hardware feature necessary on a computer that
supports multiprogramming?

Suppose you wanted to implement a multiprogramming batch oper-
ating system on a computer that has no hardware interval timer.
What problems might arise? Can you think of a way to solve these
problems using some other hardware or software mechanism?

How would your answer to Exercise 6 change if the operating system
also supported real-time processing?

Consider a multiprogramming operating system. Suppose there is
only one user job currently ready to use the CPU. With the methods
we have described, this user job would periodically be interrupted by
the expiration of its time-slice. The status of the job would be saved;
the dispatcher would then immediately restore this status and dis-
patch the job for another time interval. How might an operating sys-
tem avoid this unnecessary overhead while still being able to service
other jobs when they become ready? ‘

- Instead of maintaining a single list of all jobs with an indication of

their status, some systems keep separate lists (i.e., a ready list, a
blocked list, etc.). What are the advantages and disadvantages of this
approach? ;

In the example shown in Fig. 6.15, we assumed that no timer inter-
rupts occurred. Suppose the time-slice assigned to process P1 runs
out between sequence numbers (2) and (3). Redraw the diagram,
through the equivalent of sequence number (10), showing a possible
series of events that might occur after the timer interrupt.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Operating Systems

Redraw the diagram in Fig. 6.15, assuming that process P2 is given

higher dispatching priority than process P1 and that preemptive
process scheduling is used.

Suppose two jobs are being multiprogrammed together. Job A uses a

great deal of CPU time and performs relatively little I/0. Job B per-

forms many /0O operations, but requires very little CPU time. Which
of these two jobs should be given higher dispatching priority to

.improve the overall system performance?

Suppose the 1/0O supervisor is able to select 1 /O requests from chan-
nel queues based on a priority system. Which of the two jobs in
Exercise 12 should be given higher 1/O priority in this way?

Suppose a certain I/0O device can be reached via either one of two
1/0 channels; however, the device can be used by only one channel
at a time. How would the I/O supervisor routines described in the
text need to be changed to accommodate this situation?

How would you select the number and size of partitions for a system
using fixed-partition memory management?

What are the advantages and disadvantages of the bounds-register

- approach to memory protection, as compared to the protection-key

approach?

In a multiprogramming system, frequently an 1/0 operation is being
performed for one job while another job is in control of the CPU.
How could memory protection be provided for such an 1/O operation?
For example, how could one job be prevented from reading data into
another job’s partition?

Suppose a certain machine includes flag bits that indicate the type of
each item stored in memory or in a register (for example, integer,
character, floating-point number, instruction, or address pointer).
How could this information be used to implement relocatable parti-
tions on such a machine?

Is memory-protection hardware necessary on a machine that uses
demand-paged memory management?

Is a relocating loader necessary on a machine that uses demand-
paged memory management?

Some demand-paging systems select pages to be removed from
memory based in part upon whether the page has been modified.
That is, the system prefers to replace a page that has not been

389

390

System Software

22.

23.

24.

25.

26.

27.

modified since it was last loaded, instead of a page that has been
modified. What are the advantages and disadvantages of such
an approach?

What methods might a programmer use to improve the locality of
reference of a program? What programming techniques and data
structures would probably lead to poor locality of reference?

What would the diagram in Fig. 6.21(b) look like for a program with
no locality of reference (i.e., a program in which each memory refer-
ence is independent of the previous references)? What would the dia-
gram look like for a program with perfect locality of reference (i.e., one
with each reference made to the same page as the previous reference)?

In a multiprogramming system, other jobs can perform useful work
while one job is waiting for an I/0 operation to complete. Why, then,
does thrashing by one program in a virtual-memory system create a
problem for other programs in the same system?

Outline algorithms for the four interrupt handlers on a SIC/XE multi-
programming operating system that uses demand paging.

Why was the timer interrupt assigned a lower priority than the SVC
interrupt on the SIC/XE machine (see Section 6.2.1)?

Why was the 1/0 interrupt assigned a lower priority than the SVC
interrupt on the SIC/XE machine?

Section 6.3

. Give an algorithm for a file manager routine that performs the block-

ing and buffering operations illustrated in Fig. 6.23.

When might it be advantageous to use more than two buffers for a
sequential file? ‘

Draw a state-transition diagram similar to Fig. 6.7 for the three-level
scheduling procedure illustrated in Fig. 6.24(Db).

Is it possible for a job to have a shorter turnaround time under a
multiprogramming operating system than under a single-job system
for the same machine?

Describe algorithms and data structures for operating system rou-
tines that implement the request and release functions described in
Section 6.3.3.

Operating Systems 391

6. Suppose there is an event status block defined for each resource in
the system in such a way that “the-event-has-occurred” is logically
equivalent to “the-resource-is-free.” Could the request and release
functions described in Section 6.3.3 be implemented using the WAIT
and SIGNAL operations described in Section 6.2.2?

7. Consider the two programs in Fig. 6.26. Instead of using request and
release operations, we could simply inhibit timer interrupts between
lines 24 and 27 of P1, and between lines 37 and 40 of P2. (The inhibit-
ing and enabling of these interrupts could be done via operating sys-
tem service calls.) Would this be a practical solution to the problem
discussed in the text?

8. How might the operating system detect that a deadlock has
occurred?

Section 6.4

1. What aspects of the underlying hardware must be simulated by a
virtual machine manager? List as many items as you can, and briefly
suggest methods for accomplishing the simulation.

2. Suppose you are designing an object-oriented operating system.
What objects would be included in your system? List as many as you
can, and also indicate what operations would be applicable to each
type of object.

3. What would be the difference between a distributed operated system
and a symmetric processing operating system running on a loosely
coupled multiprocessor?

4. Suppose that additional processors are added to a master-slave mul-
tiprocessing system. What problems might arise because of this
upgrade?

5. Suppose that a new machine is added to a network operating sys-
tem. What effects would be noticed by the users of the system? What
would the system administrator have to do to accomplish this
upgrade?

6. Suppose that a new machine is added to a distributed operating sys-
tem. What effects would be noticed by the users of the system? What
would the system administrator have to do to accomplish this
upgrade?

Chapter 7

Other System Software

In this chapter we present brief overviews of several different types of system
software. The purpose of this chapter is to introduce the basic concepts and
terms related to these pieces of software. Because of space limitations, we do
not attempt to give detailed discussions of implementation. References are
provided in each section for readers who want to study these topics further.

Section 7.1 describes the purpose and functions of a generalized database
management system (DBMS), and discusses the relationship of the DBMS to
the operating system. Section 7.2 gives a brief description of interactive text-
editing systems, discussing the general approaches used in such editors.
Section 7.3 introduces the topic of interactive program-debugging systems,
and discusses some of the functions that such systems provide.

7.1 DATABASE MANAGEMENT SYSTEMS

This section describes the basic purpose and functions of a generalized data-
base management system (DBMS). Our main focus in this section is the user’s
view of a DBMS. We also discuss how the DBMS functions are related to other
types of software in the system. A comprehensive discussion of DBMS theory
and implementation can be found in Date (1990). .

Section 7.1.1 discusses the problems that led to the development of
database management systems, and presents the basic concept of a DBMS.
Section 7.1.2 describes in general terms how such systems appear to the user.
Section 7.1.3 discusses the relationship of a DBMS to other system software,
particularly the operating system. :

7.1.1 Basic Concept of a DBMS

The development of database management systems resulted in large part from
two major problems with conventional file-processing systems: data redun-
dancy and data dependence. Consider for example, Fig. 7.1, which shows a
simplified set of file-processing systems for a hypothetical university.

393

394

System Software

Registration Financial Payroll
system aid system system

Toloters

Figure 7.1 Separate file-processing systems.

Programs

This example includes a registration system to keep track of the enrollment of
students in courses, a financial aid system to control payments of scholarship
funds to students, and a payroll system for the entire university, including
both faculty and student employees.

Each file-processing system consists of a set of programs and a set of data
files. The format, organization, and content of these data files are specified by
the person who initially defines the system. The files for each system contain
only the information needed by that system; there is little or no coordination
between files belonging to different systems.

The use of separate file-processing systems like those in Fig. 7.1 often led
to a large amount of data redundancy, which is the duplication of data items in
different files. For example, the number of courses in which a student is
enrolled might be stored in one of the files for the registration system, and also
in a file for the financial aid system. If a student were an employee of the uni-
versity and a scholarship recipient, the student’s name and address might
appear in three different places.

The most obvious disadvantage of data redundancy is the additional stor-
age space required. However, there are more serious problems associated with
such duplication. A piece of information that is stored in several different
places must be updated several times when its value changes. This multiple
updating requires more computing time and more 1/O operations. Even more
serious is the possibility of inconsistent data because of program errors or dif-
ferences in the schedules for updating the files. For example, an entry in a reg-
istration file might reflect the fact that a student had withdrawn from a certain
course; however, this information might not be incorporated into the files for
the financial aid system.

One possible solution to the problem of data redundancy is illustrated in
Fig. 7.2(a). The information from all of the file systems is gathered into a single
integrated database for the entire university. This database contains only one copy
of each logical data item, so redundancy is eliminated. The database itself

Other System Software 395

1
Programs | Registration Fina%cial Payroll
l l ai l '

O\\\O

Payroll Advising

| S——

Integrated
database

Programs :

Pra —_
. |
Integrated |
= O @O OO
-

(®)

Figure 7.2 Data-dependent programs using an integrated database.
(Shading indicates changes required by the addition of a new system.)

consists of a set of files. Different applications that require the same data item
may share the file that contains the needed information.

Although the approach just described solves the problem of data redun-
dancy, it may cause other difficulties. Application programs that deal dir-
ectly with physical files are data dependent, which means they depend on
characteristics such as record format and file organization and sequence.

396

System Software

Whenever these file characteristics are changed, the application programs
must also be modified. R

Suppose, for example, that a student-advising system is added to the set of
applications. The new system may require certain information that is not
already present in the database, so one or more new files may need to be cre-
ated. On the other hand, some of the information required is already present.
The advising system may need to refer to existing files for such items as each
student’s major code and current enrollment.

- Unfortunately, this existing information may not be present in the form
required by the new system. Suppose, for example, that the advising system
must provide interactive access to enrollment information for all students who
have a given advisor. This would require that the advisor’s name be added to
the enrollment information for a student and that the enrollment data be
indexed by advisor. The content and organization of some existing files would
need to be changed, and, because of data dependence, all other programs
using these files would also have to be modified.

This situation is illustrated in Fig. 7.2(b). The advising system uses three
database files: one new file and two existing ones. It was necessary to modify
the format and structure of one of the existing files used by the new system
(shown by shading in the figure). All other programs that use this file must
therefore be changed. In this case, the changes involve programs in the existing
registration and financial aid systems.

Problems like the one just described can be avoided by making application
programs independent of details such as file organization and record format.
Figure 7.3(a) shows how this can be accomplished. The user programs do not
deal directly with the files of the database. Instead, they access the data by
making requests to a database management system (DBMS). Application pro-
grams request data at a logical level, without regard for how the data is actu-
ally stored in files. For example, a program can request current enrollment
information for a particular student. The DBMS determines which physical
files are involved, and how these files are to be accessed, by referring to a
stored data mapping description. It then reads the required records from the files
of the database and converts the information into the form requested by the
application program. This process is discussed in more detail in Sections 7.1.2
and 7.1.3.

The data independence provided by this approach means that file structures
can be changed without affecting the application programs. Consider, for
example, Fig. 7.3(b). As before, a new advising system has been added. A new
file has been added to the database, and one existing file has been modified
(indicated by the shading in the figure). The data mapping description has
been modified to reflect these changes, but the application programs them-
selves remain unchanged. The same logical request from an application

Other System Software

Programs | Registration Fina_r:’cial Payroll
ai
Request for
logical record Data
—_——— mapping
description

Physical 1/0

Database
(a)
L

Programs | Registration Fin:ir;cial Payroll Advising

Request for
logical record

Physical 1/0

Database

(b)

Figure 7.3 Data-dependent programs using a DBMS. (Shading
indicates changes required by the addition of a new system.)

program may now result in a different set of operations on the files of the
database. The application programs, however, are unaware of this difference
because they are concerned only with logical items of information, not with
how this information is stored in files.

The data independence provided by a DBMS is also important for other
reasons. The techniques used for physical storage of the database can be

397

398

System Software

changed whenever it is desirable to do so. For example, some or all of the
database can be moved to a different type of storage device. Files can be reor-
ganized, sorted in different sequences, or indexed by a different set of keys.
Decisions of this sort are usually made by a database administrator, who
attempts to organize and store the data in a way that leads to the most efficient
overall use of the database. All these changes can be made without affecting
any of the application programs. Indeed, the programs are in general not able
to detect that such changes have been made.

Because the data mapping description must be consulted for each refer-
ence to the database, using a DBMS involves more system overhead than run-
ning data-dependent programs. However, the benefits of data independence
and reduced data redundancy usually outweigh the additional overhead
required. This is particularly true when the content and structure of the data-
base are subject to periodic changes because of new applications.

7.1.2 Levels of Data Description

As we discussed in the previous section, the use of a DBMS makes applica-
tion programs independent of the way data is physically stored. With conven-
tional file systems, the programmer is concerned with descriptions of the
organization, sequencing, and indexing techniques of files to be processed.
However, such details are not usually known to a programmer using a
DBMS. Even if they are known, the programmer cannot rely on this knowl-
edge in writing a program because the physical storage of the database may
be changed at any time. Thus the application programmer’s view of the data
must be at a logical level, independent of file structure and other such ques-
tions of physical storage.

The information stored by a DBMS can be viewed in a number of different
ways, depending upon the needs of the user. The most general such view is an
overall logical database description called the schema. Figure 7.4 shows an
example of such a schema. This example contains a number of logical database
records, such as STUDENT and COURSE. Some of these records are connected
by lines that indicate possible relationships between records of the given
types. For example, the enrolled-in relationship specifies which students are
enrolled in which courses. This example is intended to represent a database
for a hypothetical university. The data items shown in each logical record illus-
trate the kinds of information that might be contained in such records. For a
real database, there would probably be more logical record types, and each
record would contain many more data items.

Database management systems differ considerably in the kinds of records
and relationships that can be included in the schema. For example, some

Other System Software

DEGREE-OBJECTIVE . COURSE
requirement

MAJOR | STANDING |&— DEPT NUMBER SECTION

major-in enrolled-in instructor

FACULTY
1 ID | NAME | DEPT| OFFICE

STUDENT
ID | NAME ADDRESS

advisor

aid-recipient student-employee faculty-employee
FINANCIAL-AID PAYROLL
TYPE | AMOUNT ID | JOB PAY-RATE DEDUCTIONS

Figure 7.4 Schema for sample university database.

systems require that the logical database representation be expressed as a hier-
archy or a tree structure, while others allow more general types of interconnec-
tions between records. Some systems do not allow explicit connections
between records at all. These connections are expressed implicitly through the
values of corresponding data items. A discussion of such data models is beyond
the scope of this book. For further information and references, see Date (1990).

The schema gives a complete description of the logical structure and con-
tent of the database. However, most application programmers are concerned
with only a small fraction of this information; a particular program usually
deals with only a few types of records and relationships. The description of
the data required by an application program is given by a subschema. There are
usually many different subschemas corresponding to one schema. Each sub-
schema gives a view of the database suited to the needs of the programs that
use that subschema.

Figure 7.5 shows three different subschemas that correspond to various
parts of the schema in Fig. 7.4. Subschema (a) is one that might be used by a
program that produces a listing of students by major. To a program using
subschema (a), the database appears to consist of a number of DEGREE-
OBJECTIVE records, with each such record linked to a set of STUDENT
records (one for each student with the given major). Subschema (b) might be
used by a program that prints class rolls for each faculty member. This view of
the database is a three-level structure. A record for each faculty member is
linked to a set of records representing the courses he or she is teaching; each of
these course records is similarly linked to a set of records representing the stu-
dents enrolled in the course. Subschema (c) is designed for use by a program

399

400 System Software

FACULTY
DEPT | NAME
instructor
DEGREE-OBJECTIVE COURSE—TAUGHT+
MAJOR | STANDING DEPT NUMBER SECTION

I . X tenrollment
major-in

STUDENT STUDENT-ENROLLED
ID | NAME ADDRESS ID | NAME| MAJOR
(a) (b)
PAY-RECORD

ID | NAME ADDRESS S/F | JOB PAY-RATE DEDUCTIONS

(c)

Figure 7.5 Three possible subschemas corresponding to the schema
of Fig. 7.4. :

that processes the payroll for the university. Each logical record in this sub-
schema contains the information needed to issue a paycheck to an employee.

These three subschemas provide quite different views of the database. A
subschema must be consistent with the schema—that is, it must be possible to
derive the information in the subschema from the schema. Subschema (a) is
simply a subset of the schema: the record names, data items, and relationships
are the same as those contained in the corresponding part of the schema. This
need not be true, however, for all subschemas.

In subschema (b), the application program uses record names that are dif-
ferent from those contained in the schema. It is also possible to use different
names for individual data items. The FACULTY record in subschema (b) con-
tains some, but not all, of the information from the FACULTY record of the
schema. The COURSE-TAUGHT subschema record contains the same infor-
mation that is present in the COURSE schema record. The STUDENT-
ENROLLED record in the subschema contains information from the
STUDENT record in the schema. However, the STUDENT-ENROLLED record
also contains information about the student’s major, which is contained in the
DEGREE-OBJECTIVE record that is logically connected to the STUDENT
record by the major-in relationship. '

Subschema (c) consists of a single logical record type PAY-RECORD, whose
data may come from three different schema records. Information concerning

Other System Software

rate of pay and deductions is taken from the PAYROLL schema record.
Information such as employee name and address is obtained from either the
STUDENT record or the FACULTY record, whichever is appropriate, by using
the student-employee and faculty-employee relationships. The data field in
PAY-RECORD that is designated S/F indicates whether the record pertains to
a student employee or to a faculty member.

A subschema provides an application program with a view of the database
that is suited to the needs of the particular program. The DBMS takes care of
converting information from the database into the form specified by the sub-
schema (see Section 7.1.3). As a result, the application program is simpler and
easier to write because the programmer does not have to be concerned with
data items and relationships that are not relevant to the application. The sub-
schema is also an aid in providing data security because a program has no
way of referring to data items not described in its subschema.

We have now discussed three different levels of data description in data-
base management systems: the subschemas, the schema, and the data map-
ping description. A DBMS supplies languages, called data description languages,
for defining the database at each of these levels. The subschemas are used by
application programmers and are written in a subschema description language
designed to be convenient for the programmer. Often subschema description
languages are extensions of the data description capabilities in the program-
ming language to be used. However, the subschemas are created and main-
tained by the database administrator. In defining a subschema, the database
administrator must be sure that the view of data given in the subschema is
derivable from the schema, and that it contains only those data items the
application program is authorized to use.

The schema itself, and the physical data mapping description, are nor-
mally used only by the database administrator. On many systems, the schema
description language is closely related to the subschema description language. It
is also possible to use a more generalized language, because the schema is not
used directly by application programmers. The physical data description lan-
guage is influenced by the types of logical structures supported by the schema,
and also by the types of files and storage devices supported by the DBMS.

Further discussions and examples of data description languages can be
found in Date (1990).

7.1.3 Use of a DBMS

In the two preceding sections we introduced basic concepts and terminology
related to database management systems. In this section we complete the pic-
ture by discussing how a user interacts with a DBMS, and how the DBMS is
related to other pieces of system software.

401

402

System Software

The two principal methods for user interaction with a DBMS are illustrated
in Fig. 7.6. The user can write a source program in the normal way, using a
general-purpose programming language. However, instead of writing
1/0 statements of the form provided by the programming language, the
programmer writes commands in a data manipulation language (DML)
defined for use with the DBMS. These commands are often designed so that
the DML appears to be merely an extension of the programming language.
As shown in Fig. 7.6(a), a preprocessor may be used to convert the DML
commands into programming language statements that call DBMS routines.
The modified source program is then compiled in the usual way. Another
approach is to modify the compiler to handle the DML statements
directly. Some DMLs are defined as a set of CALL statements using the
programming language itself, which avoids the need for preprocessing or
compiler modification.

Source program
with
DML commands

Preprocessor

Source program
with
call statements

Query
Object program language
interpreter
DBMS
(a) (b)

Figure 7.6 Interaction with a DBMS using (a) a data manipulation
language and (b) a query language.

Other System Software

The other approach to DBMS interaction, illustrated in Fig. 7.6(b), does not
require the user to write programs to access the database. Instead, users enter
commands in a special query language defined by the DBMS. These commands
are processed by a query-language interpreter, which calls DBMS routines to
perform the requested operations.

Each of these approaches to user interaction has its own advantages. With a
query language, it is possible to obtain results much more quickly because there
is no need to write and debug programs. Query languages can also be used effec-
tively by nonprogrammers, or by individuals who program only occasionally.
Most query languages, however, have built-in limitations. For example, it may be
difficult or impossible to perform a function for which the language was not
designed. On the other hand, a DML allows the programmer to use all the
flexibility and power of a general-purpose programming language; however, this
approach requires much more effort from the user. Most modern database man-
agement systems provide both a query language and a DML so that a user can
choose the form of interaction that best meets his or her needs. Further discus-
sions and examples of DMLs and query languages can be found in Date (1990).

The sequence of operations performed by a DBMS in processing a request is
essentially the same regardless of whether a DML or a query language is being
used. These actions are illustrated in Fig. 7.7. The sequence of events begins
when the DBMS is entered via a call from application program A (step 1 in the
figure). If a query language is being used, program A is the query-language
interpreter. We assume this call is a request to read data from the database.
The sequences of events for other types of database operations are similar.

The request from program A is stated in terms of the subschema being
used by A. For example, a program using the subschema in Fig. 7.5(c) might
request the PAY-RECORD for a specified employee. To process such a request,
the DBMS must first examine the subschema definition being used (step 2).
The DBMS must also consider the relationship between the subschema
and the schema (step 3) to interpret the request in terms of the overall logical
database structure. Thus, for example, the DBMS would detect that it needed
to read the schema PAYROLL record for the specified employee (see Fig. 7.4)
to supply program A with its expected PAY-RECORD. In addition to this PAY-
ROLL record, the DBMS would also need to examine the student-employee
and faculty-employee relationships for the PAYROLL record in question, and
read the corresponding STUDENT or FACULTY record.

After determining the logical database records that must be read (in terms
of the schema), the DBMS examines the data mapping description (step 4).
This operation gives the information needed to locate the required records in
the files of the database. At this point, the DBMS has converted a logical
request for a subschema record into physical requests to read data from one or
more files. These requests for file I/O are passed to the operating system (step 5)

403

404

System Software

Application
program A Subschema
used by
' Status application
Program work program A
area
@ €)
Database -
[@ management ® Schema
system
DBMS buffers
®
@
® Operating
system

Data mapping

- description

Database

Figure 7.7 Typical sequence of actions performed by a DBMS.
(Adapted from James Martin, Computer Data-Base Organization, 2nd
ed., Copyright 1977, p. 83. Reprinted by permission of Prentice-Hall Inc.,
Englewood Cliffs, N.J.)

using the types of service calls discussed in Chapter 6. The operating system
then issues channel and device commands to perform the necessary physical
1/0O operations (step 6). These I/O operations read the required records from
the database into a DBMS bulffer area. '

After the physical 1/O operations have been completed, all the data
requested by the application program is present in central memory. However,
this information must still be converted into the form expected by the program.
The DBMS accomplishes this conversion (step 7) by again comparing the schema
and the subschema. In the example we are discussing, the DBMS would extract
data from the PAYROLL record and the associated STUDENT or FACULTY
record, and construct the PAY-RECORD requested by program A. The PAY-
RECORD would then be placed into a work area supplied by the application
program; this completes the processing of the program’s request for data. Finally,
the DBMS returns control to the application program and makes available to the
program a variety of status information, including any possible error indications.

Other System Software

Further details concerning the topics discussed in this section can be found
in Date (1990).

7.2 TEXT EDITORS*

The interactive text editor has become an important part of almost any comput-
ing environment. No longer are editors thought of as tools only for program-
mers or for secretaries transcribing from marked-up copy generated by authors.
It is now increasingly recognized that a text editor should be considered the pri-
mary interface to the computer for all types of “knowledge workers” as they
compose, organize, study, and manipulate computer-based information.

In this section we briefly discuss interactive text-editing systems from the
points of view of both the user and the system. Section 7.2.1 gives a general
overview of the editing process. Section 7.2.2 expands upon this introduction
by discussing various types of user interfaces and I/0 devices. Section 7.2.3
describes the structure of a typical text editor and discusses a number of
system-related issues.

7.2.1 Overview of the Editing Process

An #nteractive editor is a computer program that allows a user to create and
revige a target document. The term document includes objects such as com-
puter programs, text, equations, tables, diagrams, line art, and photographs—
anything that one might find on a printed page. In this discussion, we restrict
our attention to text editors, in which the primary elements being edited are
character strings of the target text.

The document-editing process is an interactive user-computer dialogue
designed to accomplish four tasks:

. Select the part of the target document to be viewed and manipulated.
. Determine how to format this view on-line and how to display it.

. Specify and execute operations that modify the target document.

= W N =

. Update the view appropriately.

Selection of the part of the document to be viewed and edited involves first
traveling through the document to locate the area of interest. This search is

*Adapted from Norman Meyrowitz and Andries van Dam, “Interactive Editing Systems: Part I and
Part II,” ACM Computing Surveys, September 1982. Copyright 1982, Association for Computing
Machinery, Inc. These publications also contain much more detailed discussions of the editing
process, descriptions of a large number of actual editors, and a comprehensive bibliography.

405

406

System Software

accomplished with operations such as next screenful, bottom, and find pattern.
Traveling specifies where the area of interest is; the selection of what is to be
viewed and manipulated there is controlled by filtering. Filtering extracts the
relevant subset of the target document at the point of interest, such as the next
screenful of text or the next statement. Formatting then determines how the
result of the filtering will be seen as a visible representation (the view) on a dis-
play screen or other device.

In the actual editing phase, the target document is created or altered with a set
of operations such as insert, delete, replace, move, and copy. The editing functions
are often specialized to operate on clements meaningful to the type of editor. For
example, a manuscript-oriented editor might operate on elements such as single
characters, words, lines, sentences, and paragraphs; a program-oriented ‘editor
might operate on elements such as identifiers, keywords, and statements.

In a simple scenario, then, the user might travel to the end of the docu-
ment. A screenful of text would be filtered, this segment would be formatted,
and the view would be displayed on an output device. The user could then,
for example, delete the first three words of this view.

7.2.2 User Interface

The user of an interactive editor is presented with a conceptual model of the
editing system. This model is an abstract framework on which the editor and
the world on which it operates are based. The conceptual model, in essence,
provides an easily understood abstraction of the target document and its ele-
ments, with a set of guidelines describing the effects of operations on these
elements. Some of the early line editors simulated the world of the keypunch.
These editors allowed operations on numbered sequences of 80-character
card-image lines, either within a single line or on an integral number of lines.
Some more modern screen editors define a world in which a document i§_r§pre-
sented as a quarter-plane of text lines, unbounded both down and to the right.
Operations manipulate portions of this quarter-plane without regard to line
boundaries. The user sees, through a cutout, only a rectangular subset of this
plane on a multiline display terminal. The cutout can be moved left or right,
and up or down, to display other portions of the document.

Besides the conceptual model, the user interface is concerned vgith the
input devices, the output devices, and the interaction language of the system. Brief
discussions and examples of these aspects of the user interface are presented
in the remainder of this section.

Input devices are used to enter elements of the text being edited, to enter
commands, and to designate editable elements. These devices, as used with
editors, can be divided into three categories: text devices, button devices, and

Other System Software

locator devices. Text or string devices are typically typewriter-like keyboards
on which a user presses and releases keys, sending a unique code for each key.
Virtually all current computer keyboards are of the QWERTY variety (named
for the first six letters in the second row of the keyboard). Several alternative
keyboard arrangements have been proposed, some of which offer significant
advantages over the standard keyboard layout. None of these alternatives,
however, seems likely to be widely accepted in the near future because of the
retraining effort that would be required. N

Button or choice devices generate an interrupt or set a system flag, usually
causing invocation of an associated application-program action. Such devices
typically include a set of special function keys on an alphanumeric keyboard
or on the display itself. Alternatively, buttons can be simulated in software by
displaying text strings or symbols on the screen. The user chooses a string or
symbol instead of pressing a button.

Locator devices are two-dimensional analog-to-digital converters that posi-
tion a cursor symbol on the screen by observing the user’s movement of the
device. The most common such devices for editing applications are the mouse
and the data tablet. The data tablet is a flat, rectangular, electromagnetically
sensitive panel. Either a ballpoint-pen-like stylus or a puck, a small device simi-
lar to a mouse, is moved over the surface. The tablet returns to a system pro-
gram the coordinates of the position on the data tablet at which the stylus or
puck is currently located. The program can then map these data-tablet coordi-
nates to screen coordinates and move the cursor to the corresponding screen
position. Locator devices usually incorporate one or more buttons that can be
used to specify editing operations.

Text devices with arrow (cursor) keys can be used to simulate locator
devices. Each of these keys shows an arrow that points up, down, left, or right,
Pressing an arrow key typically generates an appropriate character sequence;
the program interprets this sequence and moves the cursor in the direction of
the arrow on the key pressed.

Voice-input.devices, which translate spoken words to their textual equiva-
lents, may prove to be the text input devices of the future. Voice recognizers
are currently available for command input on some systems.

Formerly limited in range, output devices for editing are becoming more
diverse, The output device lets the user view the elements being edited and
the results of the editing operations. The first output devices were teletype-
writers and other character-printing terminals that generated output on paper.
Next, “glass teletypes” based on cathode ray tube (CRT) technology used the
CRT screen essehtially to simulate a hard-copy teletypewriter (although a few
operations, such as backspacing, were performed more elegantly). Today’s
advanced CRT terminals use hardware assistance for such features as moving
the cursor, inserting and deleting characters and lines, and scrolling lines and

407

408

System Software

pages. The more modern professional workstations, sometimes based on per-
sonal computers with high-resolution displays, support multiple proportion-
ally spaced character fonts to produce realistic facsimiles of hard-copy
documents. Thus the user can see the document portrayed essentially as it will
look when printed on paper.

The interaction language of a text editor is generally one of several com-
mon types. The typing-oriented or text command-oriented method is the oldest of
the major editor interfaces. The user communicates with the editor by typing
text strings both for command names and for operands. These strings are sent
to the editor and are usually echoed to the output device.

Typed specification often requires the user to remember the exact form of
all commands, or at least their abbreviations. If the command language is com-
plex, the user must continually refer to a manual or an on-line help function for
a description of less frequently used commands. In addition, the typing
required can be time consuming, especially for inexperienced users. The
function-key interface addresses these deficiencies. Here each command has
associated with it a marked key on the user’s keyboard. For example, the insert
character command might have associated with it a key marked IC. Function-
key command specification is typically coupled with cursor-key movement for
specifying operands, which eliminates much typing.

For the common commands in a function-key editor, usually only a single
key is pressed. For less frequently invoked commands or options, an alterna-
tive textual syntax may be used. More commonly, however, special keys are
used to shift the standard function-key interpretations, just as the SHIFT key
on a typewriter shifts from lowercase to uppercase. As an alternative to shift-
ing function keys, the standard alphanumeric keyboard is often overloaded to
simulate function keys. For example, the user may press a control key simulta-
neously with a normal alphanumeric key to generate a new character that is
interpreted like a function key.

Typing-oriented systems require familiarity with the system and language,
as well as some expertise in typing. Function key-oriented systems often have
either too few keys, requiring multiple-keystroke commands, or have too
many unique keys, which results in an unwieldy keyboard. In either case, the
function-key systems demand even more agility of the user than a standard
keyboard does. The menu-oriented user interface is an attempt to address these
problems. A menu is a multiple-choice set of text strings or icons, which are
graphic symbols that represent objects or operations. The user can perform
actions by selecting items from the menu. The editor prompts the user with a
menu of only those actions that can be taken at the current state of the system.

One problem with a menu-oriented system can arise when there are many
possible actions and several choices are required to complete an action. The
display area for the menu is usually rather limited; therefore, the user might

Other System Software

be presented with several consecutive menus in a hierarchy before the appro-
priate command and its options appear. Since this can be annoying and detri-
mental to the performance of an experienced user, some menu-oriented
systems allow the user to turn off menu control and return to a typing or
function-key interface. Other systems have the most-used functions on a main
command menu and have secondary menus to handle the less frequently used
functions. Still other systems display the menu only when the user specifically
asks for it. For example, the user might press a button on a mouse to display a
menu with the full choice of applicable commands (perhaps temporarily over-
laying some existing information on the screen). The mouse could be used to
select the appropriate command. The system would then execute the com-
mand and delete the menu. Interfaces like this, in which prompting and menu
information are given to the user at little added cost and little degradation in
response time, are becoming increasingly popular.

7.2.3 Editor Structure

Most text editors have a structure similar to that shown in Fig. 7.8, regardless
of the particular features they offer and the computers on which they are
implemented. The command language processor accepts input from the user’s
input devices, and analyzes the tokens and Synt—zrcict structure of the com-

mands. In this sense, the command language processor functions much like

the lexical and syntactic phases of a compiler. Just as in a compiler, the com-
mand language processor may invoke semantic routines directly. In a text edi-
tor, these semantic routines perform functions such as editing and viewing.

Alternatively, the command language processor may produce an interme-
diate representation of the desired editing operations. This intermediate repre-
sentation is then decoded by an interpreter that invokes the appropriate
semantic routines. The use of an intermediate representation allows the editor
to provide a variety of user-interaction languages with a single set of semantic
routines that are driven from a common intermediate representation.

The semantic routines involve traveling, editing, viewing, and display
functions. Editing operations are always specified explicitly by thgiige‘lj,‘efrﬁ
display operations are specified implicitly by the other three categories of
operations. However, the traveling and viewing operations may be invoked
either explicitly by the user or implicitly by the editing operations. The rela-
tionship between these classes of operations may be considerably more com-
plicated than the simple model described in Section 7.2.1. In particular, there
need not be a simple one-to-one relationship between what is currently dis-
played on the screen and what can be edited. To illustrate this, we take a closer
look at some of the components of Fig. 7.8.

409

410

System Software

[v

Editing =¥ Editing —
component L_gi buffer
T -
1 i Editing
leccm e | filter 7
Traveling [~—==—===== nq I Main
component b e e c e e e > memory
Input | Command
language S i | Viewing :
processor b ! filter
N\,
N,
N o .
| Viewing Viewing | o »
\ component buffer
\
N\ Paging
\ routines
\\
Output devi Display File
utput devices <
component system .
------- Control = Data

Figure 7.8 Typical editor structure. (Adapted from Norman Meyrowitz’
and Andries van Dam, “Interactive Editing Systems: Part | and Part 1i,”
ACM Computing Surveys, 1982. Copyright 1982, Association for
Computing Machinery, Inc.) ‘

(@In editing a document, the start of the area to be edited is determined by the
current editing pointer maintained by the editing component, which is the collec-
tion of modules dealing with editing tasks. The current editing pointer can be
set or reset explicitly by the user with traveling commands, such as next para-
graph and next screen, or implicitly by the system as a side effect of the previous
editing operation, such as delete paragraph. The traveling component of the editor
actually performs the setting of the current editing and viewing pointers, and
thus determines the point at which the viewing and/or editing filtering begins.

When the user issues an editing command, the editing component invokes
the editing filter. This component filters the document to generate a new editing
buffer based on the current editing pointer as well as on the editing filter para-
meters. These parameters, which are specified both by the user and the system,
provide information such as the range of text that can be affected by an opera-
tion. Filtering may simply consist of the selection of contiguous characters
beginning at the current point}Alternatively, filtering may depend on more
complex user specifications pertaining to the content and structure of the docu-
ment. Such filtering might result in the gathering of portions of the document

Other System Software

that are not necessarily contiguous.é’he semantic routines of the editing com-
ponent then operate on the editing buffer, which is essentially a filtered subset
of the document data structure)Note that this explanation is at a conceptual
level—in a given editor, filtering and editing may be interleaved, with no
explicit editing buffer being created.

Similarly, in viewing a document, the start of the area to be viewed is deter-
mined by the current viewing pointer. This pointer is maintained by the viewing
component of the editor, which is a collection of modules responsible for deter-
mining the next view. The current viewing pointer can be set or reset explicitly by
the user with a traveling command or implicitly by the system as a resuit of the
previous editing operation. When the display needs to be updated, the viewing
companent invokes the viewing filter. This component filters the document to
generate a new viewing buffer based on the current viewing pointer as well as on
the viewing filter parameters. These parameters, which are specified both by the
user and by the system, provide information such as the number of characters
needed to fill the display, and how to select them from the document. In line edi-
tors, the viewing buffer may contain the current line; in screen editors, this buffer
may contain a rectangular cutout of the quarter-plane of text. This viewing buffer
is then passed to the display component of the editor, which produces a display by
mapping the buffer to a rectangular subset of the screen, usually called a window.)

The editing and viewing buffers, while independent, can be related in
many ways. In the simplest case, they are identical: the user edits the material
directly on the screen (see Fig. 7.9). On the other hand, the editing and viewing
buffers may be completely disjoint. For example, the user of a certain editor

Current editing pointer 71' ——————
|

Current viewing pointer 1

Viewing
buffer

Document

NANE

: Window _{/
R

Display

Figure 7.9 Simple relationship between editing and viewing buffers.

411

412

System Software

might travel to line 75, and after viewing it, decide to change all occurrences of
“ugly duckling” to “swan” in lines 1 through 50-of the file by using a change
command such as

[1,50] c/ugly duckling/swan/

As part of this editing command, there is implicit travel to the first line of the
file. Lines 1 through 50 are then filtered from the document to become the edit-
ing buffer. Successive substitutions take place in this editing buffer without
corresponding updates of the view. If the pattern is found, the current editing
and viewing pointers are moved to the last line on which it is found, and that
line becomes the default contents of both the editing and viewing buffers. If
the pattern is not found, line 75 remains in the editing and viewing buffers.

The editing and viewing buffers can also partially overlap, or one may be
completely contained in the other. For example, the user might specify a
search to the end of the document, starting at a character position in the mid-
dle of the screen. In this case the editing filter creates an editing buffer that
contains the document from the selected character to the end of the document.
The viewing buffer contains the part of the document that is visible on the
screen, only the last part of which is in the editing buffer.

Windows typically cover either the entire screen or a rectangular portion of
it. Mapping viewing buffers to windows that cover only part of the screen is
especially useful for editors on modern graphics-based workstations. Such
systems can support multiple windows, simultaneously showing different
portions of the same file or portions of different files. This approach allows the
user to perform inter-file editing operations much more effectively than with a
system having only a single window.

The mapping of the viewing buffer to a window is accomplished by two
components of the system. First, the viewing component formulates an ideal
view, often expressed in a device-independent intermediate representation.
This view may be a very simple one consisting of a window’s worth of text
arranged so that lines are not broken in the middle of words. At the other
extreme, the idealized view may be a facsimile of a page of fully formatted
and typeset text with equations, tables, and figures. Second, the display compo-
nent takes this idealized view from the viewing component and maps it to a
physical output device in the most efficient manner possible.

Updating of a full-screen display connected over low-speed lines is slow if
every modification requires a full rewrite of the display surface. Greatly
improved performance can be obtained by using optimal screen-updating
algorithms. These algorithms are based on comparing the current version of
the screen with the following screen. They make use of the innate capabilities
of the terminal, such as insert-character and delete-character functions, transmit-
ting only those characters needed to generate a correct display.

Other System Software

Device-independent output, like device-independent input, helps provide
portability of the interaction language. Decoupling editing and viewing opera-
tions from display functions for output avoids the need to have a different ver-
sion of the editor for each output device. Many editors make use of a
terminal-control database. Instead of having explicit terminal-control sequences
~ in the display routines, these editors simply call terminal-independent library
routines such as scroll down or read cursor position. These library routines use
the terminal-control database to look up the appropriate control sequences for
a particular terminal. Consequently, adding a new terminal merely entails
adding a database description of that terminal.

The components of the editor deal with a user document on two levels:
in main memory and in the disk file system. Loading an entire document
into main memory may be infeasible. However, if only part of a document is
loaded, and if many user-specified operations require a disk read by the editor
to locate the affected portion, editing might be unacceptably slow. In some sys-
tems, this problem is solved by mapping the entire file into virtual memory
and letting the operating system perform efficient demand paging. An alterna-
tive is to provide editor paging routines, which read one or more logical portions
of a document into memory as needed. Such portions are often termed pages,
although there is usually no relationship between these pages and hardcopy
document pages or virtual-memory pages. These pages remain resident
in main memory until a user operation requires that another portion of the
document be loaded.

Documents are often represented internally not as sequential strings of
characters, but in an editor data structure that allows addition, deletion, and
modification with a minimum of I/O and character movement. When stored
on disk, the document may be represented in terms of this data structure or in
an editor-independent general-purpose format, which might consist of charac-
ter strings with embedded control characters such as linefeed and tab.

Editors function in three basic types of computing environments: time shar-
ing, stand-alone, and distributed. Each type of environment imposes some con-
straints on the design of an editor. The time-sharing editor must function
swiftly within the context of the load on the computer’s processor, central
memory, and I/O devices. The editor on a stand-alone system must have access
to the functions that the time-sharing editor obtains from its host operating sys-
tem. These may be provided in part by a small local operating system, or they
may be built into the editor itself if the stand-alone system is dedicated to editing.
The editor operating in a distributed resource-sharing local network must, like
a stand-alone editor, run independently on each user’s machine and must,
like a time-sharing editor, contend for shared resources such as files.

Some time-sharing editing systems take advantage of hardware capabilities
to perform editing tasks. Many workstations and intelligent terminals have their

413

414

System Software

own microprocessors and local buffer memories in which editing manipulations
can be done. Small actions are not controlled by the CPU of the host processor,
but are handled by the local workstation. For example, the editor might send a
full screen of material from the host processor to the workstation. The user
would then be free to add and delete characters and lines, using the local buffer
and workstation-based control commands. After the buffer has been edited in
this way, its updated contents would be transmitted back to the host processor.
The advantage of this scheme is that the host need not be concerned with
each minor change or keystroke; however, this is also the major disadvantage.
With a nonintelligent terminal, the CPU sees every character as it is typed and
can react immediately to perform error checking, to prompt, to update the data
structure, etc. With an intelligent workstation, the lack of constant CPU interven-
tion often means that the functionality provided to the user is more limited. Also,
local editing operations on the workstation may be lost in the event of a system
crash. On the other hand, systems that allow each character to interrupt the CPU
may not use the full hardware editing capabilities of the workstation because the
CPU needs to see every keystroke and provide character-by-character feedback.

7.3 INTERACTIVE DEBUGGING SYSTEMS*

An interactive debugging system provides programmers with facilities that
aid in the testing and debugging of programs. A number of such systems are
now available; however, the extent to which these tools are used varies widely.
This section describes some of the most important requirements for an interac-
tive debugging system, and discusses some basic system considerations
involved in providing these services. The discussion is deliberately broad in
scope, and is not limited to any particular existing system.

Section 7.3.1 presents a brief introduction to the most important functions
and capabilities of an interactive debugging system and discusses some of
the problems involved. Section 7.3.2 describes how the debugging tool should
be related to other parts of the system. Section 7.3.3 discusses the nature of the
user interface for an interactive debugger.

7.3.1 Debugging Functions and Capabilities

This section describes some of the most important capabilities of an interactive
debugging system. Some of these functions are much more difficult to imple-
ment than others, and in a few cases, the best form of solution is not yet clear.

*Adapted from Rich Seidner and Nick Tindall, “Interactive Debug Requirements.” Software
Engineering Notes and SIGPLAN Notices, August 1983. Copyright 1983, Association for Computing
Machinery, Inc.

Other System Software

The most obvicus requirement is for a set of unit test functions that can be
specified by the programmer. One important group of such functions deals with
execution sequencing, which is the observation and control of the flow of program
execution. For example, the program may be halted after a fixed number of
instructions are executed. Similarly, the programmer may define breakpoints
which cause execution to be suspended when a specified point in the program is
reached. After execution is suspended, other debugging commands can be used
to analyze the progress of the program and to diagnose errors detected.
Execution of the program can then be resumed. As an alternative, the program-
mer can define conditional expressions that are continually evaluated during the
debugging session. Program execution is suspended when any of these condi-
tions becomes true. Given a good graphical representation of program progress,
it may even be useful to run the program at various speeds, called gaits.

A debugging system should also provide functions such as tracing and

traceback. Tracing can be used to track the flow of execution logic and data mod-
ific‘at;ipns: The control flow can be traced at different levels of detail: procedure,
branch, individual instruction, and so on. The tracing can also be based on con-
ditional expressions as previously mentioned. Traceback can show the path by
which the current statement was reached. It can also show which statements
have modified a given variable or parameter. This kind of information should
be displayed symbolically, and should be related to the source program—for
example, as statement numbers rather than as hexadecimal displacements.

It is also important for a debugging system to have good program-display
capabilities. It must be possible to display the program being debugged, com-
plete with statement numbers. The user should be able to control the level at
whiéh this display occurs. For example, the program may be displayed as it was
originally written, after macro expansion, and so on. It is also useful to be able to
modify and incrementally recompile the program during the debugging session.
The system should save all the debugging specifications (breakpoint definitions,
display modes, etc.) across such a recompilation, so the programmer does not
need to reissue all of these debugging commands. It should be possible to sym-
bolically display or modify the contents of any of the variables and constants in
the _p_rogram, and then resume execution. The intent is to give the appearance of
an interpreter, regardless of the underlying mechanism that is actually used.

Many other functions and capabilities are commonly found in interactive
debugging systems. Further descriptions of such features can be found in
Lazzerini (1992).

In providing functions such as those just described, a debugging system
should consider the language in which the program being debugged is written.
Most user environments, and many applications systems, involve the use of sev-
eral different programming languages. What is needed is a single debugging
tool that is applicable to such multilingual situations. Debugger commands that

415

416

System Software

initiate actions and collect data about a program’s execution should be common
across languages. However, a debugging system must be sensitive to the specific
language being debugged so that procedural, arithmetic, and conditional logic
can be coded in the syntax of that language.

These requirements have a number of consequences for the debugger and
for other software. When the debugger receives control, the execution of the
program being debugged is temporarily suspended. The debugger must then
be able to determine the language in which the program is written and set its
context accordingly. Likewise, the debugger should be able to switch its con-
text when a program written in one language calls a program written in a dif-
ferent language. To avoid confusion, the debugger should inform the user of
such changes in context.

The context being used has many different effects on the debugging inter-
action. For example, assignment statements that change the values of variables
during debugging should be processed according to the syntax and semantics
of the source programming language. A COBOL user might enter the debug-
ging command MOVE 3.5 TO A, whereas a FORTRAN user might enter
A = 3.5. Likewise, conditional expressions should use the notation of the
source language. The condition that A be unequal to B might be expressed as
IF A NOT EQUAL TO B for debugging a COBOL program, and as IF (A .NE. B)
for a FORTRAN program. Similar differences exist with respect to the form of
statement labels, keywords, and so on.

The notation used to specify certain debugging functions varies according
to the language of the program being debugged. However, the functions them-
selves are accomplished in essentially the same manner regardless of the
source programming language. To perform these operations, the debugger
must have access to information gathered by the language translator.
However, the internal symbol dictionary formats often vary widely between
different language translators; the same is true for statement-location informa-
tion. Future compilers and assemblers may aim toward a consistent interface
with the debugging system. One approach is for the language translators to
produce the needed information in a standard external form for the debugger
regardless of the internal form used in the translator. Another possibility isi for
the language translator to provide debugger interface modules that can
respond to requests for information in a standard way regardless of the
language being debugged.

A similar issue is related to the display of source code during the debug-
ging session. Again, there are two main options. The language translator may
provide the source code or source listing tagged in some standard way so that
the debugger has a uniform method of navigating about it. Alternatively,
the translator may supply an interface module that does the navigation and
display in response to requests from the debugger.

Other System Software

It is also important that a debugging system be able to deal with optimized
code, Application code used in production environments is usually optimized.
It is not enough to return to unoptimized forms of the code, because the prob-
lem will often disappear. However, the requirement for handling optimized
code may create many problems for the debugger. We briefly describe some of
these difficulties. Further discussions can be found in Lazzerini (1992).

Many optimizations involve the rearrangement of segments of code in the
program. For example, invariant expressions can be removed from loops
Separate loops can be combined into a single loop, or a loop may be partially
unrolled into straight-line code. Redundant expressions may be eliminated; in
some cases, this may cause entire statements to disappear. Blocks of code may
be rearranged to eliminate unnecessary branch instructions, which provides
more efficient execution. See Section 5.3.2 for examples of some of these trans-
formations.

All these types of optimization create problems for the debugger. The user
of a debugging system deals with the source program in its original form,
before optimizations are performed. However, code rearrangement alters the
execution sequence and may affect tracing, breakpoints, and even statement
counts if entire statements are involved. If an error occurs, it may be difficult
to relate the error to the appropriate location in the original source program.

A different type of problem occurs with respect to the storage of variables.
When a program is translated, the compiler normally assigns a home location in
main memory (or in an activation record) to each variable. However, as we
discussed in Section 5.2.2, variable values may be temporarily held in registers
at various times to improve speed of access. Statements referring to these
variables use the value stored in the register, instead of taking the variable
value from its home location. These optimizations present no problem for dis-
playing the values of such variables. However, if the user changes the value of
the variable in its home location while debugging, the modified value mlght
not be used by the program as intended when execution is resumed. In a simi-
lar type of global optimization, a variable may be permanently assigned to a
regisfer. In this case, there may be no home location at all.

The debugging of optimized code requires a substantial amount of coopera-
tion from the optimizing compiler. In particular, the compiler must retain infor-
matiph about any transformations that it performs on the program. Such
information can be made available both to the debugger and to the program-
mer. Where reasonable, the debugger should use this information to modify the
debugging request made by the user, and thereby perform the intended opera-
tion. For example, it may be possible to simulate the effect of a breakpoint that
was set on an eliminated statement. Similarly, a modified variable value can be
stored in the appropriate register as well as at the home location for that vari-
able. However, some more complex optimizations cannot be handled as easily.

417

418

System Software

In such cases, the debugger should merely inform the user that a particular
function is unavailable at this level of optimization, instead of attempting some
incomplete imitation of the function.

7.3.2 Relationship with Other Parts of the System

An interactive debugger must be related to other parts of the system in many
different ways. One very important requirement for an interactive debugger is
that it always be available. This means that it must appear to be a part of the
run-time environment and an integral part of the system. When an error is, dis-
covered, immediate debugging must be possible because it _may be difficult or
impossible to reproduce the program failure in some other env1ronment or at
some other time. Thus the debugger must communicate and cooperate te with
other operating system components such as interactive subsystems.

For example, users need to be able to debug in a production environment.
Debugging is even more important at production time than it is at application-
development time. When an application fails during a production run, work
dependent on that application stops. Since the production environment is
often quite different from the test environment, many program failures cannot
be repeated outside the production environment.

The debugger must also exist in a way that is consistent with the security
and integrity components of the system. It must not be possible for someone
to use the debugger to access any data or code that would not otherwise be
accessible to that individual. Similarly, it must not be possible to use.the
debugger to interfere with any aspect of system integrity. Use of the debugger
must be sub]ect to the normal authorization mechanisms and must leave the
usual audit trails. One benefit of the debugger, at least by comparison with a
storage dump, is that it controls the information that is presented. Whereas a
dump may include information that happens to have been left in storage, the
debugger presents information only for the contents of specific named objects.

The debugger must coordinate its activities with those of existing and future
language compilers and interpreters, as described in the preceding section. It is
assumed that debugging facilities in existing languages will continue to exist
and be maintained. The requirements for a cross-language debugger assume
that such a facility would be installed as an alternative to the individual
language debuggers.

7.3.3 User-Interface Criteria

The behavior and presentation of an interactive system is crucial to its acceptance
by users. Probably the most common complaint about debugging products is

